Exclusive Processes at HERMES

Arne Vandenbroucke

Gent University, Belgium
On behalf of the HERMES Collaboration

22nd Winter Workshop on Nuclear Dynamics
La Jolla, California, USA
March 17th, 2006
Outline

1. Introduction
2. DVCS
3. Pseudoscalar Mesons
4. Vector Mesons
5. Outlook
6. Summary
Polarized beam with polarization around 50%
Possibility of both electron and positron beams
The **HERMES** Spectrometer

- **Internal Polarized Gas Target**
- **Magnet**
- **Tracking Chambers** $\Delta P/P \sim 2\%$
- **Momentum measurement**
- **Lepton/Hadron Separation** with $\epsilon > 99\%$
- **RICH** to separate pion, kaon, proton
- **Calorimeter** $\Delta E_\gamma/E_\gamma \sim 5\%$

A. Vandenbroucke, WWND2006, La Jolla, March 17th
The HERMES Spectrometer

- **Internal Polarized Gas Target**
- **Magnet**
- **Tracking Chambers** $\Delta P/P \sim 2\%$
- **Lepton/Hadron Separation** with $\epsilon > 99\%$
- **RICH** to separate pion, kaon, proton
- **Calorimeter** $\Delta E_{\gamma}/E_{\gamma} \sim 5\%$
The HERMES Spectrometer

- **Internal Polarized Gas Target**
- **Magnet** Momentum measurement
- **Tracking Chambers** $\Delta P/P \sim 2\%$
- **Lepton/Hadron Separation** with $\epsilon > 99\%$
- **RICH** to separate pion, kaon, proton
- **Calorimeter** $\Delta E_\gamma / E_\gamma \sim 5\%$

A. Vandenbroucke, WWND2006, La Jolla, March 17th
Exclusive processes

- Initial and Final State *fully known*
- HERA Lepton Beam with fixed internal gas target.
- Scattered Lepton and produced meson in Hermes acceptance
- Select Exclusive reactions by putting *constraints* on the missing mass, or missing energy
Exclusive processes

- Initial and Final State *fully known*
-
 HERA Lepton Beam with fixed internal gas target.
- Scattered Lepton and produced meson in Hermes acceptance
- Select Exclusive reactions by putting *constraints* on the missing mass, or missing energy
Exclusive processes

- Initial and Final State *fully* known
- **HERA** Lepton Beam with fixed internal gas target.
- Scattered Lepton and produced meson in **Hermes acceptance**
- Select Exclusive reactions by putting *constraints* on the missing mass, or missing energy
Exclusive processes

- Initial and Final State *fully* known
- **HERA** Lepton Beam with fixed internal gas target.
- Scattered Lepton and produced meson in **Hermes acceptance**
- Select Exclusive reactions by putting *constraints* on the missing mass, or missing energy
Exclusive Leptoproduction of Mesons/Photons

- Collins, hep-ph/9907513 -
- Collins, Frankfurt, Strikman, hep-ph/9709336 -

Factorization can be applied for exclusive processes:

- a hard part
- a meson distribution amplitude
- a soft part providing information about the nucleon in terms of Generalized Parton Distributions

Factorization valid for large Q^2, low t (and γ^*_L)
Exclusive Leptoproduction of Mesons/Photons

- Collins, hep-ph/9907513 -
- Collins, Frankfurt, Strikman, hep-ph/9709336 -

- **Factorization** can be applied for exclusive processes:
 - a hard part
 - a meson distribution amplitude
 - a soft part providing information about the nucleon in terms of Generalized Parton Distributions
 - Factorization valid for large Q^2, low t (and γ^*_L)
Exclusive Leptoproduction of Mesons/Photons

- Collins, hep-ph/9907513 -
- Collins, Frankfurt, Strikman, hep-ph/9709336 -

- **Factorization** can be applied for exclusive processes:
 - a hard part
 - a meson distribution amplitude
 - a soft part providing information about the nucleon in terms of Generalized Parton Distributions

- Factorization valid for large Q^2, low t (and γ_L^*)
Factorization can be applied for exclusive processes:

- a hard part
- a meson distribution amplitude
- a soft part providing information about the nucleon in terms of Generalized Parton Distributions

Factorization valid for large Q^2, low t (and γ_L)
Factorization can be applied for exclusive processes:
- a hard part
- a meson distribution amplitude
- a soft part providing information about the nucleon in terms of Generalized Parton Distributions

Factorization valid for large Q^2, low t (and γ_L^*)
Generalized Parton Distribution Functions

- 4 GPD’s for every quark flavor q:
 \[H_q, E_q, \tilde{H}_q, \tilde{E}_q \]
- Functions of x, ξ, and t
- Contain the standard Form Factors and Distribution functions
- Combining Transverse position and Longitudinal Momentum
- Access to the Total Spin J^q via Ji’s Sum Rule:
 \[
 J^q = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} (H^q + E^q) x dx \\
 = \frac{1}{2} (\Delta u + \Delta d + \Delta s) + L^q
 \]
Generalized Parton Distribution Functions

- 4 GPD's for every quark flavor \(q \):
 \(H^q, E^q, \tilde{H}^q, \tilde{E}^q \)
- Functions of \(x, \xi, \) and \(t \)
- Contain the standard Form Factors and Distribution functions
- Combining Transverse position and Longitudinal Momentum
- Access to the Total Spin \(J^q \) via Ji's Sum Rule:
 \[
 J^q = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} (H^q + E^q) x dx = \frac{1}{2} (\Delta u + \Delta d + \Delta s) + L^q
 \]
Generalized Parton Distribution Functions

- 4 GPD’s for every quark flavor q: $H^q, E^q, \tilde{H}^q, \tilde{E}^q$
- Functions of x, ξ, and t
- Contain the standard Form Factors and Distribution functions

\[
\begin{align*}
\int_{-1}^{1} dx H^q(x, \xi, t) &= F_1^q(t) \\
\int_{-1}^{1} dx E^q(x, \xi, t) &= F_2^q(t) \\
\int_{-1}^{1} dx \tilde{H}^q(x, \xi, t) &= G_A^q(t) \\
\int_{-1}^{1} dx \tilde{E}^q(x, \xi, t) &= G_P^q(t)
\end{align*}
\]

\[
H^q(x, 0, 0) = q(x) \\
\tilde{H}^q(x, 0, 0) = \Delta q(x)
\]
Generalized Parton Distribution Functions

- 4 GPD’s for every quark flavor q: $H^q, E^q, \tilde{H}^q, \tilde{E}^q$
- Functions of x, ξ, and t
- Contain the standard Form Factors and Distribution functions
- Combining Transverse position and Longitudinal Momentum
- Access to the Total Spin J^q via Ji’s Sum Rule:
 $$J^q = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} (H^q + E^q) x dx$$
 $$= \frac{1}{2} (\Delta u + \Delta d + \Delta s) + L^q$$
Generalized Parton Distribution Functions

- 4 GPD’s for every quark flavor \(q \): \(H^q, E^q, \tilde{H}^q, \tilde{E}^q \)
- Functions of \(x, \xi, \) and \(t \)
- Contain the standard Form Factors and Distribution functions
- Combining Transverse position and Longitudinal Momentum
- Access to the Total Spin \(J^q \) via Ji’s Sum Rule:
 \[
 J^q = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} (H^q + E^q) xdx = \frac{1}{2} (\Delta u + \Delta d + \Delta s) + L^q
 \]
Both different final states and different observables select different combinations of GPD’s:

- Exclusive Pseudoscalar Meson Production: \bar{H}, \bar{E}
- Exclusive Vector Meson Production: H, E
- Deeply Virtual Compton Scattering: H, E, \bar{H}, \bar{E}
- Target or Beam related asymmetries access a product of GPD’s.
- Cross Section Measurements give access to quadratic combination.
Observing Generalized Parton Distributions

Both different final states and different observables select different combinations of GPD’s:

- Exclusive Pseudoscalar Meson Production: \(\tilde{H}, \tilde{E} \)
- Exclusive Vector Meson Production: \(H, E \)
- Deeply Virtual Compton Scattering: \(H, E, \tilde{H}, \tilde{E} \)
- Target or Beam related asymmetries access a product of GPD’s.
- Cross Section Measurements give access to quadratic combination.
Both different final states and different observables select different combinations of GPD's:

- Exclusive Pseudoscalar Meson Production: \tilde{H}, \tilde{E}
- Exclusive Vector Meson Production: H, E
- Deeply Virtual Compton Scattering: $H, E, \tilde{H}, \tilde{E}$

- Target or Beam related asymmetries access a product of GPD's.
- Cross Section Measurements give access to quadratic combination.
Observing Generalized Parton Distributions

- Both different final states and different observables select different combinations of GPD's:
 - Exclusive Pseudoscalar Meson Production: \tilde{H}, \tilde{E}
 - Exclusive Vector Meson Production: H, E
 - Deeply Virtual Compton Scattering: $H, E, \tilde{H}, \tilde{E}$
 - Target or Beam related asymmetries access a product of GPD's.
 - Cross Section Measurements give access to quadratic combination.
Deeply Virtual Compton Scattering

⇒ Probe E and H (and \bar{E}, \bar{H})
\[e + p \rightarrow e + p + \gamma \]

- **DVCS** final state indistinguishable from the **Bethe-Heithler** final state, where a Brehmsstrahlung photon is created.
DVCS final state indistinguishable from the Bethe-Heithler final state, where a Brehmsstrahlung photon is created.

Select final state by putting constraints on the Missing Mass.
$e + p \rightarrow e + p + \gamma$

- DVCS final state indistinguishable from the Bethe-Heithler final state, where a Bremsstrahlung photon is created.
- Select Final state by putting constraints on the Missing Mass
- Amplitudes add up coherently:

$$d\sigma = \left|\tau_{BH} + \tau_{DVCS}\right|^2 = \left|\tau_{BH}\right|^2 + \left|\tau_{DVCS}\right|^2 + \frac{1}{2} \left(\tau_{BH}\tau^*_{DVCS} + \tau^*_{BH}\tau_{DVCS}\right)$$

$$\propto c_0 + \sum_n c_n \cos(n\phi) + \lambda \sum_n s_n \sin(n\phi)$$
DVCS final state indistinguishable from the Bethe-Heithler final state, where a Brehmsstrahlung photon is created.

Select Final state by putting *constraints* on the Missing Mass

Amplitudes add up coherently:

\[
\begin{align*}
\frac{d\sigma}{d\Omega} &= |\tau_{BH} + \tau_{DVCS}|^2 \\
&= |\tau_{BH}|^2 + |\tau_{DVCS}|^2 + \left(\tau_{BH}^* \tau_{DVCS}^* + \tau_{BH}^* \tau_{DVCS}\right)
\end{align*}
\]

\[
\propto c_0 + \sum_n c_n \cos(n\phi) + \lambda \sum_n s_n \sin(n\phi)
\]

Beam Related Asymmetries:

BSA:

\[
d\sigma(\vec{e}^+p) - d\sigma(\vec{e}^-p) \sim \sin(\phi) \times \text{Im} M_{\text{unp}}^{1,1}
\]

BCA:

\[
d\sigma(e^+p) - d\sigma(e^-p) \sim \cos(\phi) \times \text{Re} M_{\text{unp}}^{1,1}
\]
Beam Spin Asymmetry

\[A_{LU} = \frac{1}{<|P_B|>} \frac{N^+ (\phi) - N^- (\phi)}{N^+ (\phi) + N^- (\phi)} \propto \sum n s_n \sin (n\phi) \]

\[\overline{e}^+ p \rightarrow e^+ \gamma X \quad (M_X < 1.7 \text{ GeV}) \]

HERMES PREL. 2000 (refined)

P1 = -0.04 ± 0.02 (stat)
P2 = -0.18 ± 0.03 (stat)
P3 = 0.00 ± 0.03 (stat)

\(<-t> = 0.18 \text{ GeV}^2, <x_B> = 0.12, <Q^2> = 2.5 \text{ GeV}^2\)

• expected \sin(\phi) behavior!
Beam Charge Asymmetry

$$A_C = \frac{N^+(\phi)-N^-(\phi)}{N^+(\phi)+N^-(\phi)} \propto c_0 + \sum_n c_n \cos(n\phi) + \lambda \sum_n s_n \sin(n\phi)$$

- expected $\cos(\phi)$ behaviour
- $\sin(\phi)$ moment due to polarized beam
Beam Charge Asymmetry

\[A_{C}^{\cos \phi}(t) \] can distinguish between models
- GPD model with factorized t-dependence (dotted) with D-term (dash-dotted)
- GPD model with Regge-inspired t-dependence (solid) with D-term (dashed)
From Asymmetries to GPD’s

\[M_{\text{unp}}^{1,1} = F_1(t) \mathcal{H}_1(\xi, t) + \frac{x_B}{2-x_B} (F_1(t) + F_2(t)) \tilde{\mathcal{H}}_1(\xi, t) - \frac{t}{4M^2} F_2(t) \mathcal{E}_1(\xi, t) \]

- \(F_1(t) \) and \(F_2(t) \) Dirac and Pauli Form Factors
- \(\mathcal{H}_1, \tilde{\mathcal{H}}_1 \) and \(\mathcal{E}_1 \) Compton Form Factors
From Asymmetries to GPD’s

\[M_{\text{unp}}^{1,1} = F_1(t) H_1(\xi, t) + \frac{x_B}{2-x_B} (F_1(t) + F_2(t)) \tilde{H}_1(\xi, t) - \frac{t}{4M_p^2} F_2(t) \mathcal{E}_1(\xi, t) \]

- \(F_1(t) \) and \(F_2(t) \) Dirac and Pauli Form Factors
- \(H_1, \tilde{H}_1 \) and \(\mathcal{E}_1 \) Compton Form Factors

\begin{align*}
< x_B > \sim 0.1 \text{ and } < -t > \sim 0.1 \text{GeV}^2 \\
\text{BSA : } & \propto \text{Im} H_1 \propto \sum_q e_q^2 \left(H^q(\xi, \xi, t) - H^q(-\xi, \xi, t) \right) \\
\text{BCA : } & \propto \text{Re} H_1 \propto \sum_q e_q^2 \left(\int_{-1}^{1} H^q(x, \xi, t) \left(\frac{1}{x-\xi} + \frac{1}{x+\xi} \right) dx \right)
\end{align*}

\(\Rightarrow \) Access to GPD \(H \)!
Transverse Target Asymmetry

During 2002-2005 Hermes run with a transversely polarised target: $<|P_T|> \sim 75\%$

$$A_{UT}(\phi, \phi_S) = \frac{1}{|P_T|} \cdot \frac{N^\uparrow(\phi, \phi_S) - N^\downarrow(\phi, \phi_S)}{N^\uparrow(\phi, \phi_S) + N^\downarrow(\phi, \phi_S)}$$

$$\propto \text{Im}(F_2 \mathcal{H} - F_1 \mathcal{E}) \sin(\phi - \phi_S) \cos(\phi) + \text{Im}(F_2 \tilde{\mathcal{H}} - F_1 \xi \tilde{\mathcal{E}}) \cos(\phi - \phi_S) \sin(\phi)$$
Transverse Target Asymmetry

\[A_{UT} = \sin(\phi - \phi_s)\cos(\phi) \]

HERMES PRELIMINARY
(in HERMES acceptance)

\[e^+ p \rightarrow e^+ \gamma X \]
\[(M_x < 1.7 \text{ GeV}) \]
Transverse Target Asymmetry

\[A_{UT}^{\sin(\phi - \phi_S) \cos(\phi)} \propto \text{Im}(F_2H - F_1E) \Rightarrow \text{Access to GPD } E ! \]
Pseudoscalar Mesons

⇒ Probe \tilde{E} and \tilde{H}
Cross Section:

$$\sigma_{\gamma^* p \rightarrow n + \pi^+}(x, Q^2) = \frac{N^{\pi^+}_{\text{excl}}}{L \cdot \Delta x \Delta Q^2 \cdot \kappa(x, Q^2) \cdot \Gamma(<x>, <Q^2>)}$$

- **L**: Integrated luminosity 1996-2000: 283 pb$^{-1}$
- **$\kappa(x, Q^2)$**: Detection probability (estimated from MC)
- **$\Gamma(<x>, <Q^2>)$**: Virtual photon flux factor

$$\sigma^{\pi^+} \sim (\tilde{H} + \tilde{E})^2$$
Extracting a Cross Section

- Acceptance correction is model dependent, therefore a comparison with 2 different GPD models was made
 - Mankiewicz, Piller & Radyushkin (1999)
 - Vanderhaeghen, Guichon & Guidal (1999)
Extracting a Cross Section

- Acceptance correction is model dependent, therefore a comparison with 2 different GPD models was made.
- Detection probability has to be taken into account.
\[\sigma_{\text{tot}} : Q^2 \text{ dependence in } x \text{ bins: } \sim (\tilde{H} + \tilde{E})^2 \]

- \(Q^2 \) behavior with respect to \(\sigma_L - \sigma_T \)

Q^2 dependence is consistent with LO expectations, however Vanderhaeghen, Guidal, Guichon model too small

Power corrections (\(k_T \), soft overlap) overestimate data
Testing factorisation theorem predictions σ_{red}

- Factorization theorem predicts a $\frac{1}{Q^6}$ dependence for σ_L at fixed x and t
Testing factorisation theorem predictions σ_{red}

- Factorization theorem predicts a $\frac{1}{Q^6}$ dependence for σ_L at fixed x and t

- Cross Section can be written as

$$\sigma = \frac{1}{16\pi} \frac{x^2}{1 - x} \frac{1}{Q^4} \frac{1}{1 + \frac{4m^2x^2}{Q^2}} \sum_{\text{spin}} |A(\gamma^* p \rightarrow pM)|^2$$

\begin{align*}
\text{Kinematical} & \quad \text{Factor}
\end{align*}
Testing factorisation theorem predictions σ_{red}

- Factorization theorem predicts a $\frac{1}{Q^6}$ dependence for σ_L at fixed x and t

- Cross Section can be written as

$$
\sigma = \frac{1}{16\pi} \frac{\chi^2}{1 - x} \frac{1}{Q^4} \frac{1}{\sqrt{1 + \frac{4m^2x^2}{Q^2}}} \sum_{\text{spin}} |A(\gamma^* p \to pM)|^2
$$

Kinematical Factor

σ_{reduced}
Testing factorisation theorem predictions σ_{red}

- Factorization theorem predicts a $\frac{1}{Q^6}$ dependence for σ_L at fixed x and t

- Cross Section can be written as

$$\sigma = \frac{1}{16\pi} \frac{x^2}{1 - x} \frac{1}{Q^4} \frac{1}{\sqrt{1 + \frac{4m^2x^2}{Q^2}}} \sum_{\text{spin}} |A(\gamma^* p \rightarrow pM)|^2$$

$$\sigma_{\text{reduced}}$$

pure $\gamma^*_L + \text{LO} \Rightarrow d\sigma_{\text{red}} \sim \frac{1}{Q^2}$
Testing factorisation theorem predictions σ_{red}

Fit To data of a $\frac{1}{Q^p}$ function:

\[p = 1.9 \pm 0.5 \quad p = 1.7 \pm 0.6 \quad p = 1.5 \pm 1.0 \]
Vector Mesons

⇒ *Probe E and H*
Introduction

DVCS

Pseudoscalar Mesons

Vector Mesons

Outlook

Summary

\[e^+ p \rightarrow e^- p + \rho^0 \]

- \(\rho^0 \) reconstructed from \(h^+ h^- \) pairs
- Exclusivity constraints by requiring \(\text{Missing Energy} \Delta E \) to be 0, describe background shape by MC
- Evidence of exclusive \(\rho^0 \) production
\(e^+ p \rightarrow e^+ p + \rho^0 \)

- \(\rho^0 \) reconstructed from \(h^+ h^- \) pairs
- Exclusivity constraints by requiring \(\text{Missing Energy} \ \Delta E \) to be 0, describe background shape by MC
- Evidence of exclusive \(\rho^0 \) production
e^+ p \rightarrow e^+ p + \rho^0

- ρ^0 reconstructed from $h^+ h^-$ pairs
- Exclusivity constraints by requiring Missing Energy ΔE to be 0, describe background shape by MC
- Evidence of exclusive ρ^0 production

\[
\begin{array}{c|cc}
\chi^2/\text{ndf} & 153.5 & 58 \\
\text{Constant} & 480.8 \pm 16.77 \\
\text{Mean} & 0.3600 \pm 0.1533\times10^{-1} \\
\text{Sigma} & 0.4144 \pm 0.1353\times10^{-1} \\
\end{array}
\]
Target Spin Asymmetry A_{UT} for $e^+ p \rightarrow e + p + \rho^0$

$$A = \frac{1}{|S_\perp|} \left(\int_0^\pi \sigma(\beta) d\beta - \int_\pi^{2\pi} \sigma(\beta) d\beta \right) \left/ \int_0^{2\pi} \sigma(\beta) d\beta \right.$$

- Sensitivity to J^u
- At Hermes asymmetry slope predicted to be positive
Target Spin Asymmetry A_{UT} for $e^+ p \rightarrow e + p + \rho^0$

\[A = \frac{1}{|S_{\perp}|} \left(\int_0^\pi \sigma(\beta) d\beta - \int_\pi^{2\pi} \sigma(\beta) d\beta \right) / \left(\int_0^{2\pi} \sigma(\beta) d\beta \right) \]

- Sensitivity to J^u
- At Hermes asymmetry slope predicted to be positive

\[
\sin(\phi - \phi_S) \text{ amplitude of asymmetry: } A_{UT}^{\sin(\phi - \phi_S)} \sim -A \propto E \cdot H
\]
Target Spin Asymmetry A_{UT} for $e^+ p \rightarrow e^+ p + \rho^0$

$$A = \frac{1}{|S_\perp|} \left(\int_0^\pi \sigma(\beta) d\beta - \int_\pi^{2\pi} \sigma(\beta) d\beta \right)$$

- Sensitivity to J^u
- At Hermes asymmetry slope predicted to be positive

Increasing statistics by including all transverse data will allow for an $\sigma_L - \sigma_T$ separation
Increasing statistics by including all transverse data will allow for an $\sigma_L - \sigma_T$ separation

Data consistent with theory predictions
Stay Tuned!

- Transverse Target Asymmetry for exclusive π^+
 - Theoretical prediction – Frankfurt et Al., Phys. Rev. D60 (1999), 2 models with different pion form factor
 - Data under analysis!

![Graph showing transverse spin asymmetry versus x_{bj} for different values of $-t$ and Q^2]
Stay Tuned!

- Transverse Target Asymmetry for exclusive π^+
- Exclusive π^0 production analysis ongoing
 - no pion-pole contribution
 - information about \tilde{H} only

Mankiewicz et. al.
Stay Tuned!

- Transverse Target Asymmetry for exclusive π^+
- Exclusive π^0 production analysis ongoing
- A Recoil Detector surrounding the target cell is currently being commissioned, and will allow a direct measurement of exclusive reactions.
Summary

1. Factorization theorem for hard exclusive processes allows GPD’s to be probed
2. DVCS probes the GPD’s H and E via asymmetries
 - BCA and BSA give access to H
 - A_{UT} allows E to be parametrized, giving access to J''
3. Cross Section for exclusive π^+ production
 - Comparison with GPD based model
 - Q^2 dependence in agreement with theory
4. A_{UT} for exclusive ρ^0 production gives additional constraints on H and E
Summary

1. Factorization theorem for hard exclusive processes allows GPD’s to be probed
2. DVCS probes the GPD’s H and E via asymmetries
 - BCA and BSA give access to H
 - A_{UT} allows E to be parametrized, giving access to J^u
3. Cross Section for exclusive π^+ production
 - Comparison with GPD based model
 - Q^2 dependence in agreement with theory
4. A_{UT} for exclusive ρ^0 production gives additional constraints on H and E
Summary

1. Factorization theorem for hard exclusive processes allows GPD’s to be probed

2. DVCS probes the GPD’s H and E via asymmetries
 - BCA and BSA give access to H
 - A_{UT} allows E to be parametrized, giving access to J^u

3. Cross Section for exclusive π^+ production
 - Comparison with GPD based model
 - Q^2 dependence in agreement with theory

4. A_{UT} for exclusive ρ^0 production gives additional constraints on H and E
Summary

1. Factorization theorem for hard exclusive processes allows GPD’s to be probed
2. DVCS probes the GPD’s H and E via asymmetries
 - BCA and BSA give access to H
 - A_{UT} allows E to be parametrized, giving access to J^u
3. Cross Section for exclusive π^+ production
 - Comparison with GPD based model
 - Q^2 dependence in agreement with theory
4. A_{UT} for exclusive ρ^0 production gives additional constraints on H and E
Factorization theorem for hard exclusive processes allows GPD’s to be probed

DVCS probes the GPD’s H and E via asymmetries
- BCA and BSA give access to H
- A_{UT} allows E to be parametrized, giving access to J^u

Cross Section for exclusive π^+ production
- Comparison with GPD based model
- Q^2 dependence in agreement with theory

A_{UT} for exclusive ρ^0 production gives additional constraints on H and E

Last Word:
Thanks for Listening!
$$e + p \rightarrow e + X + \pi^+$$

\[M_X^2 = (P_e + P_p - (P_{e'} + P_h))^2 \]

doesn’t allow separation of exclusive events from the non-exclusive background
e + p → e + X + π⁺

\[M_X^2 = (P_e + P_p - (P_{e'} + P_h))^2 \]

This doesn't allow separation of exclusive events from the non-exclusive background.

- **Solution:** Use the normalised \(\pi^- \) yield as an estimate for the background (\(e + p \rightarrow e + n + \pi^- \)).
\[e + p \rightarrow e + n + \pi^+ \]

\[M_X^2 = (P_e + P_p - (P_{e'} + P_h))^2 \]
doesn’t allow separation of exclusive events from the non-exclusive background

Solution: Use the normalised \(\pi^- \) yield as an estimate for the background \((e + p \rightarrow e + n + \pi^-)\).

Exclusive Peak at nucleon mass, mean and width like exclusive Monte Carlo, based on a GPD model
A Recoil Detector for HERMES

- Silicon measuring low momenta protons
- SciFi for momentum and tracking
- Photon detector to improve exclusivity
- Superconducting Magnet providing field for SciFi
- A new collimator to reduce background hits