PROSPECT OF RAPIDITY ASYMMETRY AND NUCLEAR MODIFICATIONS

Gergely Gábor Barnaföldi – CNR, Kent State University

in collaboration with:
Adeola Adeluyi – CNR, Kent State University;
George Fai – CNR, Kent State University;
Péter Lévai – MTA KFKI RMKI, Budapest;

24th Winter Workshop on Nuclear Dynamics ’08
5-12 April 2008 – South Padre Island, Texas, USA

US DOE: DE-FG02-86ER40251
0. Motivation – nuclear effects at high p_T

- $R_{dAu}(p_T)$ gives information about nuclear effects
- Y_{asym} reflects the geometrical properties of nuclear effects

I. Rapidity asymmetry and distribution

- Geometrical properties in the η distribution
- Effect of shadowing and multiple scattering

II. Nuclear modification and rapidity asymmetries

- Results at FERMILAB, RHIC and LHC energies
- Results with different shadowing parameterizations
Rapidity Asymmetry vs. Nuclear Modification

Rapidity asymmetry, \(Y_{asym}(p_T) \)

- In non-symmetric systems, like e.g. \(pA(dAu) \) collisions, the small geometrical differences of the backward/forward yields can be enlarged via rapidity-asymmetry ratio:

\[
Y_{asym} = \frac{\text{Yield(”backward”)}}{\text{Yield(”forward”)}} = \frac{\text{Yield(”Au-side”)}}{\text{Yield(”d-side”)}}
\]

Nuclear modification, \(R^{h}_{AA'}(p_T) \)

- In both, symmetric and non-symmetric systems, the relative difference in yields from \(pA(dA) \) or \(AA' \) collisions are relative to \(pp \)

\[
R^{\pi}_{AA'} = \frac{1}{\langle N_{bin} \rangle} \frac{d\sigma/d^3p_T(AA'\rightarrow\pi)}{d\sigma/d^3p_T(pp\rightarrow\pi)} = \frac{d\sigma/d^3p_T(AA'\rightarrow\pi)(”with nuclear effects”)}{d\sigma/d^3p_T(AA'\rightarrow\pi)(”without nuclear effects”)}
\]
STAR h^\pm data in dAu

- However, theoretical models described well the R_{dAu}, BUT gives opposite results for the η_{asym} values?
STAR h^\pm data in dAu

- However, theoretical models described well the R_{dAu}, BUT gives opposite results for the η_{asy} values?
- Maybe FF effects: h^\pm vs. π^0?

The BIG QUESTION: Where is the devil?
Latest STAR PID data in \(dAu\)

- More detailed data on \(Y_{\text{asym}}\) for \(p\) and \(\pi^\pm\) in \(dAu\) collisions

- PRC 76 54903 (2007)

- The geometrical effect is still there, but at high-\(p_T\) difference start to disappear.

- Similar for the \(p\) and \(\pi\) (not FF)
BRAHMS and PHOBOS $dN/d\eta$ data in dAu

- Rapidity distribution, $dN/d\eta$ is "integrated over" the p_T range
- PRL 98 032301 (2005)
- PRC 72 031901(R) (2005)
- Centrality dependence is also measured as in STAR data
- The "extracted" Y_{asym} in η ranges are similar, but not same

The devil is always in the details!
Pseudorapidity distributions – 1.

Inclusive π^0 spectra in dAu vs. η at fixed $p_T = 2.25$ GeV/c

- Simple pQCD calculation
- NO nuclear effects, only pure geometry (scaled pp)
- HIJING shadowing as an asymmetric nuclear effect
 \implies asymmetry appears:
 more π^0 at backward

The rapidity asymmetry becomes greater than 1. – OK?!
Pseudorapidity distributions – 2.

Inclusive π^0 spectra in dAu vs. η at fixed $p_T = 2.25$ GeV/c

- pQCD calculation with k_T
- NO nuclear effects, only pure geometry (scaled pp)

⇒ this enhances the yields up to intermediate p_Ts and this $\langle k_T^2 \rangle$ requires to describe hadron spectra.
⇒ Symmetry preserved

Still symmetric: rapidity asymmetry equal to 1. – OK?!
Intrinsic \(k_T \) is needed to get a precise description at \(\eta = 0 \)
... and it seems still need at higher (pseudo)rapidity values
Pseudorapidity distributions – 2.

Inclusive π^0 spectra in dAu vs. η at fixed $p_T = 2.25$ GeV/c

- pQCD calculation with k_T
- NO nuclear effects, only pure geometry (scaled pp)

\Rightarrow this enhances the yields up to intermediate p_Ts and this $\langle k_T^2 \rangle$ requires to describe hadron spectra.

\Rightarrow Symmetry preserved

Still symmetric: rapidity asymmetry equal to 1. – OK?!
Pseudorapidity distributions – 3.

Inclusive π^0 spectra in dAu vs. η at fixed $p_T = 2.25$ GeV/c

- pQCD calculation with k_T
- need for nuclear multiple scattering to describe pA
 dA or AA' yields and the Cronin effect

\Rightarrow Multiple scattering cause more enhancement in the forward, even with shadowing.

Multiscattering changes the rapidity asymmetry below 1.
Pseudorapidity distributions – 4.

Inclusive π^0 spectra in dAu vs. η at fixed $p_T = 2.25$ GeV/c

- pQCD calculation with k_T
- and with multiscattering, but NO shadowing

\Rightarrow Is multiple scattering the π^0, what turns the $Y_{asym} < 1.$ to the opposite?
Meanwhile this needed to describe hadron spectra.

Let’s eliminate the multiple scattering (😈) from the model!
What we can do with the strength nuclear effects?

- No reason why multiscattering should be constant vs. η.
- Find the different scaling for the Cronin (Int.J.Mod.Phys.E16:1923,2007)
- or just make a stronger shadowing, like EPS08 (arXiv:0802.0139v1)
It is definitely better at low p_T values

- Multiple scattering is in the parameterization, scales with x
- Nicely describe the froward data in dAu at RHIC
- BUT we lose more on the high-x effect like e.g. EMC
2. INTERMEZZO for SPS

Why are we want to keep nuclear multiscattering?
- At SPS energies the main contribution comes from higher-x
- the nuclear modification caused by shadowing is $\lesssim 5$

\implies thus, NO chance to describe OLD data by Cronin et al.
Pseudorapidity distributions – beyond high-p_Ts

Inclusive π^0 spectra in dAu vs. η at fixed $p_T = 2.25$ GeV/c

\Rightarrow The observed effect is stronger at low p_T ranges

![Graph showing inclusive π^0 spectra in dAu vs. η at fixed $p_T = 2.25$ GeV/c. The graph illustrates the distribution of π^0 particles as a function of pseudorapidity η. The observed effect is stronger at low p_T ranges.]
Pseudorapidity distributions – beyond high-p_Ts

Inclusive π^0 spectra in dAu vs. η at fixed $p_T = 6.25$ GeV/c

- The observed effect is stronger at low p_T ranges
- It is weakening as going beyond higher x values due to shadowing functions
Pseudorapidity distributions – beyond high-p_Ts

Inclusive π^0 spectra in dAu vs. η at fixed $p_T = 13.0$ GeV/c

- The observed effect is stronger at low p_T ranges
- It is weakening as going beyond higher x values due to shadowing functions
 \Rightarrow Parallel we are leaving from the Cronin region

...at much larger x values EMC effect may be seen?
Rapidity Asymmetry Ratio – in \(pBe \) at FNAL

\[
\begin{align*}
Y_{\text{Asym}} & = \frac{N_{\text{forward}} - N_{\text{backward}}}{N_{\text{forward}} + N_{\text{backward}}} \\
\text{where } N_{\text{forward}} & = \text{number of particles in forward direction} \\
\text{and } N_{\text{backward}} & = \text{number of particles in backward direction}
\end{align*}
\]

\[
\langle k_T^2 \rangle = 1.36, \quad 1.0 < |\eta| < 1.5
\]
Rapidity Asymmetry Ratio – in dAu at RHIC

\[Y_{\text{Asym}} \]

\[p_T \ [\text{GeV/c}] \]

- $|\eta| < 0.5$
- $0.5 < |\eta| < 1.0$
- $1.0 < |\eta| < 1.2$
- $1.2 < |\eta| < 1.9$
- $1.9 < |\eta| < 2.35$
- $2.35 < |\eta| < 2.9$
- $2.9 < |\eta| < 3.5$
- $3.5 < |\eta| < 3.7$
- $3.7 < |\eta| < 4.3$

STAR data
EKS + k_T
HIJING + k_T
HIJING + $k_T + m_s$

$<k_T^2> = 2.5$
Rapidity Asymmetry Ratio – in dPb at LHC

10^0 10^1 10^2 10^3

p_T [GeV/c]

Y_{Asym}

$0.0 < |\eta| < 0.9$

$2.4 < |\eta| < 4.0$

<k_T^2> = 10.1
SUMMARY

We have better and better experimental data – Thank You!

- $R_{dAu}(p_T)$ gives information about nuclear effects
- Y_{asym} reflects the geometrical properties of nuclear effects

I. Rapidity asymmetry and distribution
- Geometrical properties in the η distribution
- Effect of shadowing and multiple scattering

II. Nuclear modification and rapidity asymmetries
- Results at FERMILAB, RHIC and LHC energies
- Results with different shadowing parameterizations

Note: don’t bury the multiple scattering it is still living!