PHENIX Quarkonium Results

Tony Frawley
Florida State University

On behalf of the PHENIX collaboration

Winter Workshop on Nuclear Dynamics
February 6, 2009
Motivation – an evolving target!

Original motivation: J/ψ disappearance = direct signature of deconfinement.

But things became complicated:
→ The J/ψ may persist to as much as 2 T_c (eg. Satz, hep-ph/0512217 review).
→ Charm coalescence in QGP can increase the J/ψ yield in HI collisions.
→ Cold nuclear matter effects are large (and poorly known).

Recently Mocsy and Petrecsky (PRL 99, 211602 (2007)) calculated quarkonium spectral functions using a potential model with a screened potential:
→ They found that J/ψ are dissolved by at most 1.2 T_c.
→ The ψ' and χ_c melt at T ≤ T_c.
→ Brings us back to the J/ψ as a “canary” for the onset of deconfinement!
→ But J/ψ may still regenerate as the plasma converts to hadronic matter.
→ And we still have cold nuclear matter effects.

Experimentally, our challenge is to isolate suppression of the J/ψ in the QGP from other mechanisms in HI collisions that affect J/ψ production.
Outline of this talk

Overview of the PHENIX quarkonium program

Quarkonium in p+p

Quarkonium in d+Au

Quarkonium in Au+Au and Cu+Cu
PHENIX

Central arms

\[J/\psi \rightarrow e^+ e^- \]
\[P > 0.2 \text{ GeV/c} \]
\[|\eta| < 0.35 \]
\[\Delta \phi = \pi \]

Muon arms

\[J/\psi \rightarrow \mu^+ \mu^- \]
\[P > 2 \text{ GeV/c} \]
\[1.2 < |y| < 2.2 \]
\[\Delta \phi = 2\pi \]
The PHENIX J/ψ program

Systematic program at 200 GeV/A to characterize the effect of hot dense matter in the final state on J/ψ production. It consists of collisions of:

• **p+p** - Baseline J/ψ production cross sections
• **d+Au** - The cold nuclear matter baseline:
 → J/ψ breakup by collisions with projectile nucleons
 → Shadowing/CGC effects
• **Au+Au** - Hot + cold nuclear matter effects versus Npart
• **Cu+Cu** - Same as Au+Au, but much better precision at low Npart

Run 8 d+Au data contains # J/ψ:
 ~13K at y = 0
 ~90K at |y| = 1.7

That analysis is ongoing. I will not show results from it. The CNM results shown here are from Run 3.
Quarkonium in p+p
J/ψ production in p+p collisions

Our first large statistics J/ψ data set for p+p was from Run 5. It was used as the reference for the Cu+Cu and Au+Au published R_{AA} data.
Run 6 provided a higher statistics J/ψ data set

The mid rapidity p+p J/ψ data from Run 6 were combined with the Run 5 data to provide the reference for the high p$_T$ Cu+Cu R$_{AA}$ data that will be shown later.

They were also analyzed to extract ψ' yields and J/ψ polarization.
The ψ' vs p_T in $p+p$ collisions at mid-rapidity

Within uncertainties $\psi'/(J/\psi)$ agrees with HERA-B & E789 measurements.

- $(\text{BR}^*\psi')/(\text{BR}^*J/\psi) = 1.9\%$

$\sqrt{s} = 39 \text{ GeV}$

$\text{BR}^*\sigma_{\psi'} (p_T < 7 \text{ GeV/c}, |y|<0.35) = 0.88 \pm 0.30/-0.20 \pm 0.12 \text{ nb}$

$(\text{BR}^*\psi')/(\text{BR}^*J/\psi) = 0.019 \pm 0.005 \pm 0.002$

$<0.38 \text{ 90\% CL}$
J/ψ polarization in p+p at 200 GeV

PHENIX results on J/ψ polarization at y=0, |y|=1.7.

Predictions from Lansberg & Haberzettl, hep ph/0806.4001 (2008)
→ Color singlet model with (new) s-channel cut
→ Parameters fixed using CDF data
→ Reproduces $d^2\sigma/dy/dp_T$
→ does not include effect of feed-down from χ_c & ψ'

Starting to see useful levels of precision for p+p polarization measurements. We hope to be able to do this also for AA collisions in high luminosity runs.
J/ψ production in d+Au collisions
Cold nuclear matter effects from d+Au data

We want to be able to extract from our d+Au data a prediction of the cold nuclear matter R_{AA} for A+A.

The first exploration of this, using Run 3 d+Au data, was published in PRC 77, 024912(2008).

Our method was to take a calculation by Ramona Vogt of production of J/ψ from cold nuclear matter effects using two shadowing models, with a J/ψ absorption cross section added to account for destruction of the forming J/ψ by collisions with projectile nucleons.

The absorption cross section was determined by fitting it to the PHENIX R_{dAu} data.

Best fit dissociation cross section for the d+Au rapidity distribution:

EKS: \(\sigma_{\text{breakup}} = 2.8^{+1.7}_{-1.4} \) mb

NDSG: \(\sigma_{\text{breakup}} = 2.2^{+1.6}_{-1.5} \) mb

This can then be used to calculate the CNM only RAA for Au+Au at mid and forward rapidity.

However – since the absorption cross section is the same at all rapidities, the ratio of Au+Au \(R_{AA} \) at \(y=1.7 \) to \(y=0 \) is entirely a prediction of the shadowing model!
NOTE: Mistake in extracting σ_{breakup} from d+Au data

- The data points, statistical and systematic uncertainties in the previous slide are all **correct**.
- The one standard deviation **uncertainty band** for the breakup cross section contains a mistake.
- The band does not account for all the systematic uncertainties, as intended in the paper.
- Correctly including the systematic uncertainties will make the band larger.
- This mistake affects all of the cold nuclear matter projections shown in this talk.
- **We expect to release corrected values soon.**
Ad hoc fits to d+Au centrality dependence

Fit the J/ψ breakup cross section in the Vogt calculations to the d+Au R_{AA} vs centrality separately for $y=0$ and $|y|=1.7$. This yields:

<table>
<thead>
<tr>
<th></th>
<th>y=0</th>
<th>σ_B=2.3 $+2.1–1.8$ mb</th>
<th>y=1.7</th>
<th>σ_B=3.9+$1.3-1.2$ mb</th>
</tr>
</thead>
<tbody>
<tr>
<td>EKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDSG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using different breakup cross sections at forward and mid rapidity means that we are no longer using a self-consistent model to fit all of the d+Au data.

But it gives us parameterizations of the d+Au data at $y=0$ and $|y|=1.7$ that are independent of each other and have independent uncertainties.

We then estimate the Cu+Cu and Au+Au R_{AA} due to CNM effects alone by using the fitted absorption cross section at each rapidity, in concert with the appropriate PDF's from EKS or NDSG.

We will compare these with Cu+Cu and Au+Au data later.
J/ψ Production in Au+Au and Cu+Cu
QGP effects on J/ψ production

Stronger J/ψ suppression at forward rapidity in Au+Au. Why?

• Stronger CNM suppression at $y=1.7$?
• Color screening difference?
• Larger regeneration at $y=0$ than $y=1.7$?

Three potentially compensating effects!
→ Too many poorly controlled parameters.

What can we do experimentally to help?

• CNM baseline R_{AA} – d+Au
• Measure open charm cross sections more precisely – poorly known from data
• Look for effects of open charm flow
• Better experimental measurements in turn-on region at Npart ~ 50 – Cu+Cu
The turn-on region: Add J/ψ from Cu+Cu collisions

Cu+Cu has the advantage of providing much better statistical precision and much lower systematic uncertainties than Au+Au for the region of Npart ~ 4-100.

The critical energy density for deconfinement is expected to be reached for $\sqrt{s}=200$ GeV collisions at ~ Npart ~ 40-50.
Comparison with CNM baseline

Cu+Cu and Au+Au data compared with **CNM baseline** from ad hoc fits to d+Au (Vogt EKS calculations fitted independently at mid and forward/backward rapidity to d+Au centrality dependence).

Note that the **ratio** (lower panel) of forward rapidity to mid rapidity data points lies inside the **1-sigma band** (dashed lines) around the CNM best estimate from d+Au.

The different suppression at forward and mid rapidity could be due entirely to CNM effects!
Same as the previous slide, but **CNM baseline** this time is from ad hoc fits to d+Au (Vogt NDSG calculations fitted independently at mid and forward/backward rapidity to d+Au centrality dependence).

Very similar conclusion to the EKS case: The ratio of forward to mid rapidity R_{AA} could be from CNM alone.
Correcting for CNM baseline

Now we plot in the lower panel the R_{AA} divided by the CNM baseline. This uses the ad hoc fit to d+Au with the Vogt EKS calculations.

We do this for Cu+Cu only - the CNM uncertainty is too large to be useful for the Au+Au case.
Same as for the previous slide, except that the ad hoc fit to d+Au with the Vogt NDSG calculations is used.

Very similar conclusion to the previous slide.

We see that at both forward and mid rapidity the Cu+Cu R_{AA} is found to be consistent with CNM effects alone within 15% uncertainties up to $N_{part} \sim 50$.

This corresponds to

$\varepsilon_{\text{Bjorken}} \tau \sim 1.5 \text{ GeV/fm}^2/c$

We need a better CNM reference to go beyond that.
Higher p_T: PHENIX Cu+Cu R_{AA} data

PHENIX Minbias Cu+Cu R_{AA} extended to higher p_T using the combined Run 5 and Run 6 pp data as the reference.
Higher p_T: PHENIX Cu+Cu R_{AA} data

PHENIX Minbias Cu+Cu R_{AA} extended to higher p_T using the combined Run 5 and Run 6 pp data as the reference.

The PHENIX data seem flatter with p_T than the STAR 0-60% centrality data.
Comparison with several models of p_T dependence

AdS/CFT ("hot wind") - more suppression at high p_T:

Liu, Rajagopal, Wiedemann
PRL 98, 182301 (2007)

Regeneration (2-component):
Zhao, Rapp
PLB 664, 253 (2008) & private communication

Equilibrating Parton Plasma:
Xu, Kharzeev, Satz, Wang,
hep-ph/9511331

Gluonic dissoc. & flow:
Patra, Menon, nucl-th/0503034

Cronin – less suppression at higher p_T:
→ need Run 8 d+Au data as a guide
J/ψ flow?

J/ψ’s from regeneration should inherit the large charm-quark elliptic flow.

This is a first measurement of J/ψ v_2, made at both mid- and forward-rapidity.

Very limited statistics, no conclusion can be drawn.

→ Need more data for this measurement.

→ But it is do-able!
Where do we stand?

- We have marginally good enough p+p reference statistics at high p_T.
 → This may become a problem as the Spin focus moves to 500 GeV

- Our Run 3 d+Au CNM reference data are statistically inadequate.

- A new CNM analysis based on the 40 x larger yields from Run 8 d+Au data is underway – hope to have preliminary result by QM09.

- We have decent Au+Au and Cu+Cu statistics to go with the improved d+Au statistics from Run 8. We will have a well defined CNM baseline and good R_{AA} data to go with it.

- In future, we also expect:
 → Higher p_T - more integrated luminosity – coming next few years
 → J/ψ flow - more integrated luminosity – coming next few years
 → J/ψ polarization - more luminosity – coming next few years
 → Better open charm cross sections - Si upgrades – also coming
 → Other quarkonia
Backup
PHENIX & STAR Preliminary Y p+p Cross Sections

1st Upsilons at RHIC

BR*dsig/dy (pb)

Rapidity

STAR QM06 Preliminary
PHENIX QM05 Preliminary
NLO MRST - R. Vogt