Reconstructed Jet Results in $p+p$, $d+Au$ and $Cu+Cu$ collisions at 200 GeV from PHENIX

Dennis V. Perepelitsa
Columbia University
for the PHENIX Collaboration

28th Winter Workshop on Nuclear Dynamics
Dorado del Mar, Puerto Rico

8 April 2012
Introduction

Jets in PHENIX
 Gaussian Filter
 Analysis Techniques

p+p
 Fragmentation

d+Au
 k_T Broadening

Cu+Cu
 $\Delta \phi$ broadening

Outlook
 Jets at RHIC

Acknowledgements
Jet reconstruction is being done in heavy ion collisions at RHIC and the LHC:

- Reconstruct full fragmenting parton kinematics at LO.
- Sensitive probe of suppression/quenching effects.
Why Jets at RHIC?

- Complementary set of measurements from two high statistics colliders!

- Can measure jet modification at:
 - lower energies due to smaller underlying event
 - different x and Q^2 (different mixture of quark and gluon jets)

- Versatility of collision species provides:
 - ability to vary system size, energy density, geometry
 - control against cold nuclear matter effects

\Rightarrow Cu+Au, U+U collisions in the next 1-2 months!
Drift Chamber (DC), Pad Chambers (PC) and Ring Imaging Čerenkov Detector (RICH) measure charged hadrons and electrons

Electromagnetic Calorimeter (EMCal) clusters photons, π^0's, (some) neutral hadrons

EMCal/RICH Trigger (ERT) and the high PHENIX DAQ rate allow complementary Minimum Bias and high-p_T triggered datasets
Gaussian Filter algorithm

1. Seedless, cone-like algorithm with a Gaussian angular weighting (nucl-ex/0806.1499)

\[p_{T}^{\text{jet}} \equiv \max \left\{ \int \int d\eta' d\phi' p_{T} (\eta', \phi') e^{-(\Delta \eta^2 + \Delta \phi^2)/2\sigma^2} \right\} \]

2. Focuses on the energetic core of the jet, optimizing \(S/B \)

3. Stabilizes the jet axis in the presence of background
Fake jet rejection

- Technique to separate low-p_T jets from underlying event fluctuations in HI collisions on a jet by jet basis.
- g-discriminant (with $\sigma_{\text{dis}} < \text{typical distance between underlying event particles}$):

$$g_{\sigma_{\text{dis}}} (\eta, \phi) \equiv \sum_{i \in \text{fragment}} (p_T)_i^2 \exp \left(-\left(\Delta \eta^2 + \Delta \phi^2 \right) / 2\sigma_{\text{dis}}^2 \right)$$

- Similar to “angularly-weighted” p_T which rewards jets with a tight core of energy and punishes diffuse jets.
Fake jet rejection

\[g_{\sigma_{\text{dis}}}(\eta, \phi) \equiv \sum_{i \in \text{fragment}} (p_T)_i^2 \exp \left(-\left(\Delta \eta^2 + \Delta \phi^2 \right) / 2\sigma_{\text{dis}}^2 \right) \]

- Require \(g_{\sigma_{\text{dis}}} > g_{\text{min}} \):
 - \(\Rightarrow \) efficient saturation with reconstructed \(p_T \)
 - \(\Rightarrow \) trade reconstruction efficiency for sample purity
- Data-driven approaches used to set fake jet rejection threshold \(g_{\text{min}} \).
In PHENIX, energy “resolution” driven by tracking inefficiency, loss of n, K_L^0 neutral energy, edge of acceptance effects.

- **PYTHIA** Tune A 2 \rightarrow 2 QCD events from $Q^2 = 0.5$ to 64 GeV.
 - Cross-checks with HERWIG, other PYTHIA tunes
 - Embedding into real heavy ion background.

- NLO calculation + hadronization correction in progress that will allow proper comparison to data.
Demonstration of PHENIX jet reconstruction capability.

Comparison with NLO pQCD across ten orders of magnitude.

- residual differences from jet definition

Analysis being finalized, moving towards publication.
Proof of principle measurement of fragmentation function

\(z = \frac{p_{_{\text{particle}}}}{p_{_{\text{jet}}}} \)

\(n \)-dimensional generalization to GURU SVD unfolding implementation:

\[
\left(p_{_{\text{particle}}}^{_{\text{rec}}}, p_{_{T}}^{_{\text{rec}}} \right) \rightarrow \left(p_{_{\text{particle}}}^{_{\text{truth}}}, p_{_{T}}^{_{\text{truth}}} \right)
\]
Jets in $d+Au$ at $\sqrt{s} = 200$ GeV

- anti-k_T jet reconstruction with $R = 0.3, 0.5$
- Reconstructed jet R_{CP} at the $p+p$ reconstructed scale.
 - p_T-feeding from modest underlying event evaluated with embedding procedure and unfolded
- Suppression effect consistent with single-particle π^0 measurement.
 - Cold nuclear matter energy loss?
 - Centrality dependent nPDF modification?
Introduction

Jets in PHENIX

Gaussian Filter

Analysis Techniques

p+p

Fragmentation

d+Au

k_T Broadening

Cu+Cu

Δφ broadening

Outlook

Jets at RHIC

Acknowledgements

Systematic change in R_{CP} with centrality selection

Consistency between cone sizes

Ongoing improvements to analysis will produce:

R_{dA}

lower p_T behavior

results at p_T^{truth} scale

⇒ critical for refining our understanding of Au+Au results!
Reconstructed di-jets can be used to examine multiple scattering effects in the cold nuclear medium.

Search for possible broadening by examining:

\[p_{\text{out}} \left(= \langle k_T \rangle \right) \equiv (p_T)_{\text{low}} \cdot \sin \Delta \phi \]

Kinematic requirements on away-side jet removes combinatorial contribution.

\[\Rightarrow \text{constraint on centrality-dependent broadening.} \]
Jets in \(Cu+Cu \) at \(\sqrt{s} = 200 \) GeV

- \(p_T \)-feeding from underlying event:
 - subtraction of centrality- and \(z \)-vertex parameterized average background

- \(p_T \)-smearing from UE fluctuations:
 - evaluated through embedding \(p+p \) jets into \(Cu+Cu \) minimum bias events
 - results shown here unfolded to \(p+p \) reconstructed scale
Suppression of reconstructed jet R_{AA}:

\Rightarrow over a wide p_T range

\Rightarrow systematic with centrality

\Rightarrow comparable to single-particle suppression

Potential out-of-cone radiation or other jet modification?
Changes in the width of $\Delta \phi$ distribution would be a possible signal of cold nuclear matter effects.

⇒ No centrality-dependent broadening observed within sensitivity.
Outlook

- Jet reconstruction efforts are ongoing.
 - Current set of measurements being finalized!

- PHENIX capability for jet measurements improving:
 - VTX (silicon vertex tracker) and FVTX (forward silicon vertex tracker) to provide superior tracking and b/c separation

- “sPHENIX” upgrade plan:
 - dedicated jet detector with acceptance, hermiticity, hadronic calorimetry
 - see A. Hanks talk, Tuesday 6:30pm
Jets at RHIC Study

- In support of the sPHENIX program:
 - “Jet - Underlying Event Separation Method for Heavy Ion Collisions at the Relativistic Heavy Ion Collider” (nucl-ex/1203.1353)
 - Test ability to associate truth jets with reconstructed jets at RHIC energies.
 - Proof of principle that reconstructed jets produced at RHIC rates can be separated from fake jets.
 - \(0.75 \times 10^9\) Au+Au HIJING events at \(\sqrt{s_{NN}} = 200\) GeV
 - \(\Delta \eta \times \Delta \phi = 0.1 \times 0.1\) segmented “ideal” calorimeter with \(\phi \in (0, 2\pi), \eta \in (-1, +1)\)
Iterative background subtraction evolved from ATLAS procedure:

- exclusion of jet energy from background determination
- proper v_2 modulation
High purity of reconstructed jets:

- Appropriate regime for well-controlled unfolding to $E_{T,true}$

- Before any fake jet rejection scheme!
Jet Results

D.V. Perepelitsa

Introduction
Jets in PHENIX

Gaussian Filter
Analysis Techniques

$p+p$
Fragmentation

$d+Au$

k_T Broadening

$\Delta \phi$ broadening

Outlook
Jets at RHIC

Acknowledgements

Jets at RHIC Study

- Jets from hard scatterings dominate above $E_T^{\text{reco}} > 20, 30, 40 \text{ GeV}$ for $R = 0.2, 0.3, 0.4$ anti-k_T, respectively.
- RHIC luminosity upgrade: 10^{10} central $Au+Au$ collisions / year
 - capitalize on high PHENIX data rate
 - high statistics inclusive jet, di-jet, γ-jet measurements!
- see A. Hanks talk, Tuesday 6:30pm
Many Thanks To...

- Brian Cole, Nathan Grau, Yue-Shi Lai
- Ali Hanks, Jamie Nagle, Anne Sickles for sPHENIX discussions
- PHENIX Collaboration
- WWND12 Organizers