Measurements of Hard Probes in Heavy Ion Collisions with ATLAS

Aaron Angerami for the ATLAS Collaboration

Winter Workshop in Nuclear Dynamics
Squaw Valley, CA, USA
Thursday, February 7, 2013
Jets in Heavy Ion Collisions

- Jets provide a powerful tool for determining medium properties via jet quenching
 - Energy loss of a parton or modification of its parton shower through interactions with medium

- Fully reconstructed jets are directly sensitive to energy loss
 - Jet kinematics closely related to those of parton suffering energy loss

- Functional definition of a jet in HI collisions
 - Energy clustered in a jet reconstruction algorithm above the uncorrelated underlying event
 - May include medium response (correlated)

- New measurements provide quantitative constraints on quenching mechanism and medium transport coefficients
Hard scattering rates and inclusive energy loss

\(\gamma/Z/W\) : sensitive to CNM effects
Jets : both CNM and quenching

Correlations and differential energy loss
asymmetry and \(\Delta\phi\) distributions
dijet, \(\gamma\)-jet and \(Z\)-jet

Jet properties
Fragmentation function
The ATLAS Detector

Detector characteristics
- Width: 44m
- Diameter: 22m
- Weight: 7000t

ZDC@ ±140 m
EM barrel and end cap use "accordion" design for uniform radiation length

- Liquid argon end-caps
 - $1.7 \mid \eta \mid < 3.2$

- Hadronic end-cap (HEC)

- EM end-cap (EMEC)

Steel-scintillator hadronic calorimeters

- Tile barrel
 - $\mid \eta \mid < 1.0$
 - $0.8 < \mid \eta \mid < 1.7$

- Extended tile barrel

- Liquid argon end-cap

- Liquid argon barrel
 - $\mid \eta \mid < 1.5$

 - High granularity precision calorimeter
 - Fine η segmentation in first layer for γ—π^0 separation
 - Presampler layer to measure early showers

- Liquid argon Forward calorimeter (FCal)

- Combined EM and hadronic
 - $3.2 < \mid \eta \mid < 4.9$

- Strip cells in Layer 1

- Square cells in Layer 2

- Cells in Layer 3
 - $\Delta \phi \Delta \eta = 0.0245 \pm 0.05$

-Trigger Tower
 - $\Delta \eta = 0.1$

- Trigger Tower
 - $\Delta \phi = 0.0982$

- Hadronic end-cap

- EM end-cap

-/Columbia University IN THE CITY OF NEW YORK/
Heavy Ions in ATLAS

\[
\int \mathcal{L} \, dt = 7 \, \mu b^{-1}
\]

\[
\int \mathcal{L} \, dt = 140 \, \mu b^{-1}
\]
Results from the LHC indicate asymmetric dijet events are a manifest feature of heavy ion collisions.
Dijet Asymmetry: Original Result

Significant fraction of events with enhanced dijet asymmetry while simultaneously preserving the back-to-back angular correlation

\[A_J = \frac{E_T^1 - E_T^2}{E_T^1 + E_T^2} \]

\[E_{T1} > 100 \text{ GeV} \]

\[E_{T2} > 25 \text{ GeV} \]

First direct observation of jet quenching

ATLAS

Columbia University in the City of New York

Thursday, February 7, 13

[hep-ex/1210.6182]
Beyond Asymmetry

- Dijet asymmetry is striking signature of jet quenching but it is also difficult to understand quantitatively
 - Dependent on energy loss of two jets with path-length correlation
- Supplement the picture by studying inclusive quenching
 - Hard scattering rates in HI \(R_{AA}, R_{CP} \)
- Must decouple quenching from CNM effects
 - Check rates of color neutral processes:
 - \(\gamma, W^\pm \rightarrow \ell^\pm \nu_\ell, Z^0 \rightarrow \ell^+ \ell^- \)
 - Directly sensitive to NPDF
- Systematically map out dependence of energy loss
Clean measurement: Di-lepton mass distribution shows background near Z peak

Measurements in both e⁺e⁻ and μ⁺μ⁻ channels provide consistency check

\[\langle N_{\text{coll}} \rangle \] – scaled yields show no significant centrality dependence for both channels and independent of \(p_T \)
Production rate consistent with T_{AA}-scaling both as a function of p_T, centrality and rapidity

"Model" is PYTHIA with cross section scaled by NNLO calculation and $\langle T_{AA} \rangle$
Measurement of isolated photons using double sideband technique

- Simultaneously apply isolation and “tight” shower requirements
- Correct for inefficiency and contamination

\[
\frac{(1/N_{\text{evt}}) dN/dp_T}{\langle T_{\text{AA}} \rangle} \text{ [pb/GeV]} = 10^7, 10^5, 10^3, 10, 10^{-1}, 10^{-3}, 10^{-5}, 10^{-7}
\]

\[
\text{photon } p_T \text{ [GeV]}
\]

\[
E_T(R_{\text{iso}}=0.3) \text{ [GeV]}
\]

\[
\text{Non-tight}
\]

\[
\text{HI Tight}
\]

\[
A \quad B
\]

\[
C \quad D
\]
Direct Photon Production Rates

\[\langle T_{AA} \rangle \text{--scaled yield is consistent with NLO calculation (JETPHOX)} \]

No significant centrality or \(p_T \) dependence observed

\[\langle T_{AA} \rangle \]

\(p_T \) dependence

\[\text{Data/JETPHOX} \]

\(0-10\% (+6) \)

\(10-20\% (+4) \)

\(20-40\% (+2) \)

\(40-80\% \)

\(\text{ATLAS Preliminary} \)

\(\text{Pb+Pb} \sqrt{s_{NN}} = 2.76 \, \text{TeV} \)

\(L_{\text{int}} = 133 \, \mu\text{b}^{-1} \quad |\eta| < 1.3 \)
Jet Suppression

- Medium effects may cause jet energy to be transported outside the nominal jet cone
- Can lost energy be recovered by expanding size of jet definition (radius)?
 ➡️ Measure single jet suppression with multiple jet sizes

- Jets produced with different angles wrt to event plane (Δφ) will see different path lengths and density profiles in the medium
 ➡️ Measure single jet suppression as a function of Δφ: \(v_2^{\text{jet}} \)
Perform event-by-event subtraction per calorimeter cell in jet

\[E_{Tj}^{\text{sub}} = E_{Tj} - A_j \rho_i(\eta_j) (1 + 2v_{2i} \cos [2(\phi_j - \Psi_2)]) \]

- Average, \(\eta \)-dependent background \(E_T \) density: \(\rho \)
- Elliptic flow modulation: \(\eta \) and \(\rho_T \) averaged \(v_2 \)
 \(\Rightarrow \) Jet energy unaffected by global elliptic flow

Two-step procedure to prevent jets from biasing subtraction

- Define jet “seeds” and exclude from \(\rho \) and \(v_2 \) determination
 - e.g. only blue cells included in \(\rho(\eta) \)
Results: R_{CP} vs ρ_T in Centrality Bins

$R = 0.2$

$R = 0.4$

Result fully unfolded (SVD method) for finite jet energy resolution

Use 60–80 % as peripheral reference
Results: R_{CP} vs N_{part} in p_T bins

- Centrality dependence as represented by N_{part}
- Suppression turns on differently for high and low p_T jets
Results: R_{CP} vs R

0–10% centrality

<table>
<thead>
<tr>
<th>R_{CP}</th>
<th>p_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>38 p_T < 44 GeV</td>
</tr>
<tr>
<td>0.3</td>
<td>50 p_T < 58 GeV</td>
</tr>
<tr>
<td>0.4</td>
<td>89 < p_T < 103 GeV</td>
</tr>
<tr>
<td>0.5</td>
<td>158 < p_T < 182 GeV</td>
</tr>
</tbody>
</table>

ATLAS
$\text{Pb+Pb} \sqrt{s_{NN}} = 2.76 \text{ TeV}$
$\int L dt = 7 \mu b^{-1}$

89 < p_T <103 GeV

<table>
<thead>
<tr>
<th>R_{CP}</th>
<th>p_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0–10% centrality</td>
</tr>
<tr>
<td>0.3</td>
<td>10–20%</td>
</tr>
<tr>
<td>0.4</td>
<td>30–40%</td>
</tr>
<tr>
<td>0.5</td>
<td>50–60%</td>
</tr>
</tbody>
</table>

ATLAS
$\text{Pb+Pb} \sqrt{s_{NN}} = 2.76 \text{ TeV}$
$\int L dt = 7 \mu b^{-1}$
Quantitative statement of R dependence

\[
\frac{R_{CP}}{R_{CP}} = 0.2 \quad 0 - 10 \%
\]

Pb+Pb $\sqrt{s_{NN}} =$ 2.76 TeV

\[
\int L \, dt = 7 \, \mu b^{-1}
\]

ATLAS

- $R = 0.3$
- $R = 0.4$
- $R = 0.5$

Ratios of R_{CP} to R_{CP} with $R=0.2$

Measure relative suppression with respect to most suppressed R value ($R=0.2$)

Variation with R is significant

Note switch log scale to focus on low p_T behavior

$\int L \, dt = 7 \, \mu b^{-1}$

- Many systematics cancel, correlated between different R
- Statistical correlation between different R values included and propagated through unfolding
Results: v_2 vs p_T

\[\int L \, dt = 0.14 \, \text{nb}^{-1} \quad 5 - 10\% \]

\[\text{Pb+Pb} \sqrt{s_{NN}} = 2.76 \, \text{TeV} \]

\[\text{anti-}k_t \, R = 0.2 \quad 10 - 20\% \]

\[\text{ATLAS preliminary} \]

\[\text{Jet energy resolution (unfolded)} \]

\[\text{EP resolution} \]

5% modulation in jet yield at low p_T, decreases with p_T to ~1.5%
Results: v_2 vs N_{part}

Modulation is smallest in most central collisions where initial collision geometry is most symmetric
Conclusions: Hard Scattering Rates

- Production of color-neutral probes consistent with binary scaling, **three independent checks**: $Z \rightarrow e^+e^-$, $Z \rightarrow \mu^+\mu^-$ and γ
- Jets are **suppressed by factor of two** in central collisions and show no p_T dependence for $38 < p_T < 210$ GeV
 - Roughly same as single particle R_{AA} for $p_T > 30$ GeV
- Jets with larger R show less suppression more so at low p_T
- Centrality dependence of suppression turns on differently for high and low p_T jets
- **Significant modulation of jet yield** with respect to event plane
 - 5% at low p_T decreasing to ~1.5% at 200 GeV
 - Modulation is smallest in most central collisions where initial collision geometry is most symmetric
Asymmetry: Differential Energy Loss

- γ/Z— jet correlations provide clean probe since γ and Z (or leptonic decay products) do not suffer energy loss
 - Do NOT expect jets recoiling against γ/Z to have same p_T as γ/Z
 - Effects like initial state parton shower cause broadening of distribution
 - Focus on $x_J = p_T^{\text{jet}} / p_T^{\gamma/Z}$

- Unmodified x_J and A_J distributions in are different γ— and Z— jet events
 - Large virtuality required to produce Z
 - Potentially provide different handles on energy loss since intrinsic are different
\(\gamma\)-jet: \(x_J\) Distributions

\[R = 0.2 \]

\[R = 0.3 \]
γ-jet: Per photon yield

- Integrated yield of recoiling jets normalized per photon
- Suppression is caused by increased fraction of jets that do not fall in the p_T range considered

$R_{Jγ}$ vs. N_{part} for $R=0.2$ and $R=0.3$ at $\sqrt{s_{NN}}=2.76$ TeV.

- $R=0.2$ Data
- $R=0.2$ PYTHIA + Data
- $R=0.3$ Data
- $R=0.3$ PYTHIA + Data

ATLAS Preliminary

Pb+Pb $L_{int}=0.13$ nb$^{-1}$

$\sqrt{s_{NN}}=2.76$ TeV
Z–jet Correlations

0–20% centrality

ATLAS Preliminary
Pb+Pb $\sqrt{s_{NN}}=2.76$ TeV, $L_{int}=0.15$ nb$^{-1}$

Anti-k_T Jet R=0.2, $p_T^{jet}>25$, $p_T^{Z}>60$ GeV, $p_T^{jet}/p_T^{Z}>25/60$

- PYTHIA: Mean=0.79±0.01
- Pb+Pb: Mean=0.62±0.04±0.03

0-20% Centrality

20–80% centrality

ATLAS Preliminary
Pb+Pb $\sqrt{s_{NN}}=2.76$ TeV, $L_{int}=0.15$ nb$^{-1}$

Anti-k_T Jet R=0.2, $p_T^{jet}>25$, $p_T^{Z}>60$ GeV, $p_T^{jet}/p_T^{Z}>25/60$

- PYTHIA: Mean=0.79±0.01
- Pb+Pb: Mean=0.70±0.07±0.05

20-80% Centrality

- Mostly proof of principle due to low statistics but hints at potential of the measurement when more data comes
Jet Structure: Fragmentation Function

\[D(z) = p_T \cos(\Delta R)/p_T^{\text{jet}} \]

\[\text{ATLAS Preliminary} \]

\[\text{Pb+Pb} \sqrt{s_{\text{NN}}} = 2.76 \text{ TeV} \]
\[L_{\text{int}} = 0.14 \text{ nb}^{-1} \]

\[\text{D}(z) \]

\[\text{D}(p_T) \]

\[p_T^{\text{jet}} > 100 \text{ GeV} \]
\[p_T > 2 \text{ GeV} \]

\[\text{ATLAS} \]

\[\text{CONF-2012-115} \]

\[\text{ATLAS Experiment} \]

\[\text{IN THE CITY OF NEW YORK} \]
Similar trends in $D(z)$ and $D(p_T)$ distributions

- Enhancement at low z/p_T
- Suppression at moderate z/p_T
- High p_T behavior may exhibit additional enhancement
Jet Structure: R Dependence

$R = 0.2$

$R = 0.3$

$D(z)$

Behavior persists for smaller radii

$D(\rho_T)$

Robust against UE effects which increase with R
Looking forward

- ATLAS HI jet program just getting started

Roadmap
1) Qualitative understanding of quenching mechanism
2) Quantitative values of medium parameters
3) Study temperature evolution of parameters, especially near phase transition — RHIC is crucial for this!

Papers
- Dijet asymmetry
- Rates of color neutral probes (Z)
- Inclusive jet suppression and jet size dependence

Preliminary Results
- Rates of color neutral probes (γ/W)
- γ — and Z— jet correlations
- Azimuthal dependence of suppression (v_2 for jets)
- Fragmentation function
- Suppression of heavy flavor tagged jets
- Charged hadron R_{CP}

For complete ATLAS HI results see: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults
Additional Slides
The dashed tracks are invisible to the detector.
Single hadron R_{CP}

ATLAS Preliminary
Pb+Pb $\sqrt{s_{NN}}=2.76$TeV
Data 2010 + 2011
$L_{\text{int}} = 0.15\text{nb}^{-1}$
Single hadron R_{CP} : η dependence

ATLAS Preliminary
Pb+Pb $\sqrt{s_{NN}}$=2.76TeV
Data 2010 + 2011
$L_{\text{int}} = 0.15\text{nb}^{-1}$
Invariant Yield: Prompt Muons

Pb+Pb \(\sqrt{s_{NN}} = 2.76 \) TeV
\(|\eta| < 1.05\)
\[\int L \, dt = 7 \mu b^{-1} \]

- Use signal fraction to extract spectrum
- Muon reco efficiency correction applied

Error bars: uncorrelated combined statistical+systematic
• Generally flat with p_T however statistical fluctuation in peripheral bin makes trend difficult to evaluate
Muon R_{PC} vs p_T

- Can evaluate R_{PC} instead
- Easier to see very flat p_T dependence

\[R_{PC} = \frac{\frac{1}{N_{coll}} \frac{1}{N_{evt}} \frac{dN}{dp_T}}{\frac{1}{N_{coll}} \frac{1}{N_{evt}} \frac{dN}{dp_T}} \bigg|_{0-10} - \bigg|_{\text{periph}} \]

\[\int L \, dt = 7 \, \mu b^{-1} \]

<table>
<thead>
<tr>
<th>p_T [GeV]</th>
<th>0.0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-20% / 0-10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-40% / 0-10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-60% / 0-10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-80% / 0-10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pb+Pb $\sqrt{s_{NN}} = 2.76$ TeV

$|\eta| < 1.05$

$\int L \, dt = 7 \, \mu b^{-1}$
Muon R_{CP} vs N_{part}

$\int L dt = 7 \mu b^{-1}$

ATLAS Preliminary

Pb+Pb

$\sqrt{s_{NN}} = 2.76$ TeV

$|\eta| < 1.05$

- $4 < p_T < 5$ GeV
- $6 < p_T < 7$ GeV
- $8 < p_T < 9$ GeV
- $10 < p_T < 14$ GeV

$\langle N_{part} \rangle$
W Yields

\[\int L \approx 5 \, \text{nb}^{-1} \quad \sqrt{s_{NN}} = 2.76 \, \text{TeV} \]

\[R_{PC} \]

ATLAS Preliminary

Data 2010

Total uncertainty
Centrality

- Determined from FCal E_T distribution, which is well correlated with total event activity

- Standard centrality definitions:
 - “central”: 0-60% divided into 6 10%
 - “peripheral” 60-80%

- $N_{\text{coll}}, N_{\text{part}}$ and uncertainties from Glauber

- R_{CP} uses ratio: $R_{\text{coll}}^\text{cent} = \frac{\langle N_{\text{coll}}^{\text{cent}} \rangle}{\langle N_{\text{coll}}^{60-80} \rangle}$
• Apply IRC safe jet definition to measured E_T distribution in calorimeter

• In addition to jet signal, also have contribution from underlying event (UE)

• **Define** jet measurement as energy **correlated** with single QCD hard scattering, need to separate from **uncorrelated** UE contribution

\[
\frac{dE_{T\text{total}}}{d\eta d\phi} = \frac{dE_{T\text{UE}}}{d\eta d\phi} + \frac{dE_{T\text{jet}}}{d\eta d\phi}
\]

• Construct estimate of UE background, subtract and run jet finding

 • Average depends strongly on centrality, must determine event-by-event

 • Must be modulated to include flow effects \[1 + 2v_2 \cos[2 (\phi - \Psi_2)]\]

• Jets must be excluded from the estimate of the background
Jet Reconstruction

- Define average background excluding cells $\Delta R < 0.4$ from jet

- Calculate event plane angle from FCal

$$\Psi_2 = \frac{1}{2} \tan^{-1}\left(\frac{\sum_k w_k E_{T,k} \sin(2\phi_k)}{\sum_k w_k E_{T,k} \cos(2\phi_k)} \right)$$

- Calculate v_2 per sampling layer:

$$v_{2i} = \frac{\sum_{j \in i} E_{T,j} \cos[2(\phi_j - \Psi_2)]}{\sum_{j \in i} E_{T,j}}$$

- Average over η excluding bins within 0.4 of seeds

- Also reconstruct track jets, run anti-k_t $R=0.4$ on particles $p_T > 4$ GeV
Jet Reconstruction: First Step

- Calculate v_2
- Run anti-k_t with $R=0.4$ on tracks $p_T > 4$ GeV
- Run anti-k_t with $R=0.2$ on unsubtracted E_T distribution
- Define initial seeds as all jets with:
 - $D = \frac{\text{max(tower } E_T)}{\text{mean(tower } E_T)} > 4$
 - At least one tower $E_T > 3$ GeV
- Exclude from average background all cells within jet seeds
- Define a background, modulate by v_2, to build subtracted jets
- Apply jet energy scale calibration to subtracted jets
Jet Reconstruction: Second Step

- Use output of previous step to define new seeds:
 - Jets with $E_T > 25$ GeV
 - Track jets $p_T > 10$ GeV
 - Define new background excluding cells $\Delta R < 0.4$ from jets
 - Define new v_2:
 - Calculate v_2 in each η bin (0.1)
 - Average over η excluding bins within 0.4 of seeds
 - Run anti-k_t $R=0.2$, 0.3, 0.4 and 0.5 on subtracted background
 - Calibrate jet energy scale
Reconstruction capabilities evaluated using MC
- Use PYTHIA dijets embedded into HIJING events
- Validated using data, extract systematics
• Matching between track jets and calo jets to study calorimetric response in MC and data
• Limits effects of possible medium-modified fragmentation on JES
• All values not shown 0.5%

<table>
<thead>
<tr>
<th>R</th>
<th>0 - 10 %</th>
<th>10 - 20 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.5 %</td>
<td>0.5 %</td>
</tr>
<tr>
<td>0.3</td>
<td>1.0 %</td>
<td>0.5 %</td>
</tr>
<tr>
<td>0.4</td>
<td>1.5 %</td>
<td>1.0 %</td>
</tr>
<tr>
<td>0.5</td>
<td>2.5 %</td>
<td>1.5 %</td>
</tr>
</tbody>
</table>

• JES uncertainty constant above 70 GeV (table)
• Grows linearly, doubling from its nominal value at 30 GeV
Performance: Jet Energy Resolution

- Extract “σ” through statistical RMS or Gaussian fit
- Low E_T: dominated by UE fluctuations
- High E_T: limited by intrinsic detector resolution
- Described by functional form:

$$\frac{\sigma(\Delta E_T)}{E_T} = \frac{1}{E_T} \left(a \sqrt{E_T} \oplus b \oplus c E_T \right)$$

- a: sampling fluctuations
- c: proportional to energy e.g. holes
- b: UE fluctuations

ATLAS simulation

anti-k_t $R = 0.4$

$\sigma [\Delta E_T/E_T^{\text{truth}}]$ fit, 0-10%
$\sigma [\Delta E_T/E_T^{\text{truth}}]$ fit, 60-80%
$\langle \Delta E_T/E_T^{\text{truth}} \rangle$, 0-10%
$\langle \Delta E_T/E_T^{\text{truth}} \rangle$, 60-80%

Efficiency

$\langle \Delta E_T/E_T^{\text{truth}} \rangle$ or $\sigma [\Delta E_T/E_T^{\text{truth}}]$
Fluctuations Analysis

- Uncorrelated UE fluctuations underneath jet not subtracted
- Effect on jet spectrum corrected by unfolding
 - MC must provide accurate description of UE fluctuations
- Study distributions of E_T sum in groups of rectangular groups of towers approximately same size as jets (e.g. 7x7 \leftrightarrow R=0.4)
Performance: Jet Energy Resolution

- **Fixed by fluctuation analysis**

\[
\frac{\sigma(\Delta E_T)}{E_T} = \frac{1}{E_T} \left(a\sqrt{E_T} \oplus b \oplus cE_T \right)
\]

- **Free parameters in fit**
 - Fit results give a and c values in agreement for all centralities
 - Establishes quantitative relationship between UE fluctuations and \(\Delta E_T \) fluctuations (JER)

ATLAS simulation
- \(\sigma [\Delta E_T/ E_T^{\text{truth}} + \text{fit, 0-10\%}] \)
- \(\sigma [\Delta E_T/ E_T^{\text{truth}} + \text{fit, 60-80\%}] \)
- \(\langle \Delta E_T \rangle / E_T^{\text{truth}}, 0-10\% \)
- \(\langle \Delta E_T \rangle / E_T^{\text{truth}}, 60-80\% \)

Pb+Pb \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \int L dt = 240 \text{ mb}^{-1} \)
Jet Reconstruction : Corrections

- Jet energy scale calibration factors obtained specifically for HI reconstruction
 - Cell energies are at “EM” scale
 - Response calibrated to EM deposition only
 - Apply multiplicative (p_T, η, R dependent) JES factor
 - Derive using “Numerical Inversion” procedure, MC based
- Energy bias
 - If cells in final jets were not excluded by seeds, some (or all) of the jet’s energy will have biased the background
 - After selecting “good” jets (fake rejection) apply correction removing any biases these jets may have on background
Unfolding

- UE and detector effects result in finite JER
 - Jet spectrum is steeply falling
 - Result is significant bin migration
- Use MC to generate response matrix
 - Contains information about bin migration
- SVD unfolding
 - Invert response using curvature constraint on result to regularize unfolding
- Unfolding checks
 - Apply to MC, look for bias
 - “Refold” data, check refolded looks like input

Hocker and Kartvelishvili: hep-ph/9509307
Error Analysis: Statistical Errors

- Since unfolding involves bin migration there is non-trivial covariance matrix
- Use toy method to estimate statistical uncertainty
- Construct fluctuation of data using measured covariance
- Unfold “pseudo experiment”
- Repeat many times, calculate statistical covariance
- Apply same method to include statistical uncertainty in response matrix from MC
- Combine two covariance matrices as independent sources

\[
\rho_{ij} = \frac{\text{Cov}(Y_i, Y_j)}{\sqrt{\text{Var}(Y_i)} \sqrt{\text{Var}(Y_j)}}
\]

\[\int L \, dt = 7 \, \mu b^{-1}\]
Pb+Pb $\sqrt{s_{NN}} = 2.76$ TeV

ATLAS

0 - 10 % Centrality

Thursday, February 7, 13
Overview of Systematic Uncertainties

- **JES**: Relative energy scale differences central and peripheral
- **JER**: Possible disagreement between data and MC in UE fluctuations

Efficiency: cover possible MC/data differences, 5% for $p_T < 100$ GeV

X_{ini}: Sensitivity to power in power law: $+0.5$, -0.5

R_{coll}: sensitive to centrality determination, σ_{NN}

Regularization: Sensitivity to choice of k: +/-1
Measured Yield Before Corrections

Red curve: fit to $1 + 2 v_2^\text{jet} \cos 2\Delta\phi$

5 - 10 % $\text{anti-}\kappa_t R = 0.2$
$60 < p_T < 80 \text{ GeV}$

10 - 20 %
$\int L \, dt = 0.14 \text{ nb}^{-1}$
$\sqrt{s_{NN}} = 2.76 \text{ TeV}$
$v_2^\text{jet} \bigg|_{\text{meas}} = 0.032 \pm 0.002$

20 - 30 %
$v_2^\text{jet} \bigg|_{\text{meas}} = 0.042 \pm 0.002$

30 - 40 %
$v_2^\text{jet} \bigg|_{\text{meas}} = 0.041 \pm 0.002$

40 - 50 %
$v_2^\text{jet} \bigg|_{\text{meas}} = 0.034 \pm 0.003$

50 - 60 %
$v_2^\text{jet} \bigg|_{\text{meas}} = 0.027 \pm 0.004$
Event Plane Resolution

ATLAS preliminary

Pb+Pb $\sqrt{s_{NN}} = 2.76$ TeV

2010 MB, $\int L \, dt = 8 \, \mu b^{-1}$

2011 jets, $\int L \, dt = 0.14 \, nb^{-1}$
Azimuthal Dependence of Jet Performance

\[\langle \Delta p_T / p_T \rangle \]

- \(45 < p_T < 60 \text{ GeV} \)
 - ATLAS preliminary simulation

- \(60 < p_T < 80 \text{ GeV} \)
 - anti-\(k_t \), \(R = 0.2 \)
 - 10 - 20 \%

- \(80 < p_T < 110 \text{ GeV} \)

\[\sigma [\Delta p_T / p_T] \]

- \(45 < p_T < 60 \text{ GeV} \)
 - ATLAS preliminary simulation

- \(60 < p_T < 80 \text{ GeV} \)
 - anti-\(k_t \), \(R = 0.2 \)
 - 10 - 20 \%

- \(80 < p_T < 110 \text{ GeV} \)
Overview of Systematic Uncertainties

ATLAS preliminary

anti-k_t $R = 0.2$

Pb+Pb $\sqrt{s_{NN}} = 2.76$ TeV

$\int L \, dt = 0.14$ nb$^{-1}$

Jet energy resolution
Event plane resolution
Spectral shape

Error on v_{2}^{jet} x 100

$50 - 100\%$

$30 - 40\%$

$10 - 20\%$

$40 - 50\%$

$20 - 30\%$

$50 - 60\%$

p_T [GeV]
Systematic Uncertainties

• Both JER and JES uncertainties, fill response matrix with modified \((p_T^{\text{reco}}, p_T^{\text{truth}})\)

• Unfold with new response matrix, use difference from nominal result as error

\[
p_T^{\text{reco}} \rightarrow p_T^{\text{reco}}(1 + f(p_T^{\text{true}})) \quad f(p_T = 40) = 2f(p_T = 70)
\]

• **JES**: used MC closure, overlay and in-situ study

• **JER**: use fluctuation analysis, vary \(b \rightarrow b' = b(1 + g)\) to cover data/MC difference

 • \(g = 2.5\%, 2.5\%, 5\%, 7.5\%\) for \(R = 0.2, 0.3, 0.4\) and \(0.5\)

 • Use \(b'\) to calculate a new JER \(\sigma(b')\), rescale \(\Delta p_T = (p_T^{\text{truth}} - p_T^{\text{reco}})\)

\[
p_T^{\text{reco}} \rightarrow p_T^{\text{truth}} + (p_T^{\text{truth}} - p_T^{\text{reco}}) \frac{\sigma(b')}{\sigma(b)}
\]
Two-Jet Observables: Dijet Asymmetry

\[A_J = \frac{E_T^1 - E_T^2}{E_T^1 + E_T^2} \]

\[E_T^1 > 100 \text{ GeV} \]
\[E_T^2 > 25 \text{ GeV} \]

Contributions to second peak mostly from events where second jet consistent with background level

Updated from published result
Dijet Asymmetry: \(R=0.2 \)

\[A_J = \frac{E_T^1 - E_T^2}{E_T^1 + E_T^2} \]

- \(E_T^1 > 100 \text{ GeV} \)
- \(E_T^2 > 25 \text{ GeV} \)

Smaller \(R \) is less sensitive to background fluctuations.

Distribution flatter, peak smeared out
Asymmetry: Energy Dependence, $R=0.2$

Increasing jet energy stretches peak out

Peak at low values of A_J restored in peripheral collisions
Dijet Angular Correlation

- $\Delta \phi$ distributions show (almost) no modification
- Contribution in tail likely due to combinatoric match with uncorrelated or fake low energy jet
- Rate is reduced for smaller R value, consistent with lower fake rate for these jets

$\Delta \phi$ vs. E_{T1}, E_{T2} for different centralities.

- Centrality 0-10%
 - $E_{T1} > 100$ GeV
 - $E_{T2} > 25$ GeV
 - $R = 0.4$

- Centrality 10-20%
 - $E_{T1} > 100$ GeV
 - $E_{T2} > 25$ GeV
 - $R = 0.2$

- Centrality 20-30%
 - $E_{T1} > 100$ GeV
 - $E_{T2} > 25$ GeV
 - $R = 0.4$

Pb+Pb $\sqrt{s_{NN}} = 2.76$ TeV, $L_{int} = 7 \mu b^{-1}$

Pb+Pb Data

p+p Data
Photon Reconstruction

Non-tight

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
</tr>
</thead>
</table>

HI Tight

| A | B |

Normalized counts

$E_T(R_{iso}=0.3)$ [GeV]

$0-10\%$

$E_T(R_{iso}=0.3)$ [GeV]

ATLAS Preliminary

Pb+Pb $\sqrt{s_{NN}}=2.76$ TeV

$L_{int} = 133 \ \mu$b$^{-1}$

• Data

• PYTHIA+HIJING

Thursday, February 7, 13
Photon Performance

Efficiency

1-Purity

ATLAS Preliminary

Photon ID \(\in \) 40-80%
Photon ID \(\in \) 20-40%
Photon ID \(\in \) 10-20%
Photon ID \(\in \) 0-10%
Total \(\in \) 40-80%
Total \(\in \) 20-40%
Total \(\in \) 10-20%
Total \(\in \) 0-10%

\(p_T [\text{GeV}] \)

\(p_T [\text{GeV}] \)

\(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV} \)

\(L_{\text{int}} = 133 \mu b^{-1} \)

40-80%
20-40%
10-20%
0-10%