Forward $J/\psi \rightarrow \mu\mu$ production in Cu+Au collisions at PHENIX

Richard Hollis
University of California, Riverside
Winter Workshop on Nuclear Dynamics
Squaw Valley, CA (Feb 2013)
Overview

- Motivation
- Past measurements
 - Tests of hot and cold nuclear matter
- Why CuAu collisions?
- J/ψ measurement in PHENIX
- Results
Why measure J/ψ?

- Hard collision product
 - Dominated by gluon fusion
- Loosely bound ccbar state
 - 'Melt' in a QGP?
 - Modification was an initial signature of QGP formation
- Complex interplay between hot and cold nuclear matter … need more variables to disentangle effects
What has been measured: Hot nuclear matter

- Au+Au and Cu+Cu collision data
 - Suppression turns on with centrality
 - Similar dependence with overlap volume (N_{part})
What has been measured: Cold nuclear matter

- $d+Au$
 - Forward/backward asymmetry
 - “suppression” at forward rapidity
- See K. Lee's talk for details
Observational Summary

- $J/\psi \rightarrow$ modified by both hot and cold nuclear matter

- Cold nuclear matter:
 - Shadowing, anti-shadowing, and Cronin
 - Evaluated where these are active, but hot nuclear matter is absent
 - Suppression or enhancement

- Hot nuclear matter, or final state effects
 - Color screening in the hot, dense medium

- Current interpretation needs both hot and cold
 - True relative contribution is difficult to disentangle
 - Colliding different systems, at the same energy, provides additional insight into the relative importance of such mechanisms
Add more geometrical variation: Cu+Au collisions

- Why CuAu (more details from A.Iordanova's talk)
 - Forward/backward momentum asymmetry (like d+Au, but also includes hot nuclear matter)
 - Left-right asymmetry – test of possible core/corona effects
 - Natural triangularity – is this borne out in data?

- Summary: different geometrical controls
 - Next: test them
CuAu Collisions –
Exploiting the flexibility of RHIC

• Why interesting?
 • Naturally odd harmonics
 – Possibility to investigate a “true v3”
 • Large “corona” on Au-side
 – Giving rise to more detailed investigation of it's size
 – “v₁-like” azimuthal dependence
 • Completely swallowed Cu-nucleus in central collisions
 – Cu-going corona vanishes

Participant density (log-z scale)

Glauber model CuAu, b=4fm
CuAu Collisions – Exploiting the flexibility of RHIC

Why interesting?

- Naturally odd harmonics
 - Possibility to investigate a “true v_3”
- Large “corona” on Au-side
 - Giving rise to more detailed investigation of it's size
 - “v_1-like” azimuthal dependence
- Completely swallowed Cu-nucleus in central collisions
 - Cu-going corona vanishes

Glauber model CuAu, $b=4\text{fm}$
CuAu Collisions –
Exploiting the flexibility of RHIC

- Why interesting?
 - Naturally odd harmonics
 - Possibility to investigate a “true v3”
 - Large “corona” on Au-side
 - Giving rise to more detailed investigation of its size
 - “v_1-like” azimuthal dependence
 - Completely swallowed Cu-nucleus in central collisions
 - Cu-going corona vanishes
Global observations

- BBC asymmetry → forward/backward asymmetry in bulk
Global observations

- v_1 at mid-rapidity → left/right asymmetry

Centrality: 30–40%

p_T: 2–3 GeV/c

$\Delta \phi = \phi - \psi_{SMD}$

$v_1 \rightarrow (3.1 \pm 0.3) \times 10^{-3}$
$v_2 \rightarrow (4.6 \pm 0.3) \times 10^{-3}$
$v_3 \rightarrow (0.2 \pm 0.3) \times 10^{-3}$
Global observations

- Geometrical effects are borne out in charged hadrons,
 - What about more hard scatterings?
Measuring J/ψ in PHENIX
Measuring J/ψ in PHENIX

- Three pieces:
 - **Tracking**
 - In the muon tracker
 - **Identification**
 - In the MuID (short road through all planes)
 - **Match**
 - Track pieces to ID
 - Track to vertex
Measuring J/ψ in PHENIX

- **Tracks**: small χ^2 and extrapolate back to vertex
- **Identification**: must transcend full MuID steel
- **Matching**: requires spatial position and track/road slopes to be similar
- **Non-matching tracks**: characteristic of hadronic background with larger multiple scattering (or in-flight decay)
Combinatorics

- Combinatorics form a large background
 - Background estimated from mixed event subtraction

- Central data:
 - Peak visible, but atop a large background
Combinatorics

- Combinatorics form a large background
 - Background estimated from mixed event subtraction

- Central data:
 - Peak visible, but atop a large background

- Peripheral data:
 - Clear peak, little background

![Diagram showing Au-going direction with raw counts and invariant mass in GeV/c^2]
Nuclear Modification Factor

- Comparison between particle yields in AA to pp (scaled by the expected number of collisions)
- CuCu and AuAu
 - CNM and final-state effects
 - Suppression observed
 - Independent of collision system

![Graph showing comparisons between J/ψ and μμ distributions for different collision systems and number of participants.]
Nuclear Modification Factor

- Comparison between particle yields in AA to pp (scaled by the expected number of collisions)
- CuCu and AuAu
 - CNM and final-state effects
 - Suppression observed
- Independent of collision system
- CuAu collisions
 - Same suppression as AuAu/CuCu measured in the Au-going direction
Nuclear Modification Factor

- Comparison between particle yields in AA to pp (scaled by the expected number of collisions)
- CuCu and AuAu
 - CNM and final-state effects
 - Suppression observed
 - Independent of collision system
- CuAu collisions
 - Same suppression as AuAu/CuCu measured in the Au-going direction
 - More suppressed in the Cu-going direction
 - J/ψ not significantly more suppressed in completely swallowed-Cu (top 5%) events
Nuclear Modification Factor

- One example of CNM effects
 - Can partially explain forward / backward difference
 - Final state effects must account for additional suppression

- Similar CNM observations in AuAu collisions

- Model:
 - 4mb break-up cross-section
 - Best describes dAu data
 - Center line → best EPS09 fit
 - Band limits → outer limit of EPS09 nPDFs
 - Linear thickness dependence on shadowing
 - No centrality dependence

February 5th 2013
Relative Suppression

- Ratios of yields at fixed centrality
- Relative suppression observed forward/backward
- Centrality-independent

Presents a challenge to theories trying to describe the data
Relative Suppression

- Ratios of yields at fixed centrality
- Relative suppression observed forward/backward
- Centrality-independent

Presents a challenge to theories trying to describe the data
Energy Density

- Reminder
 - CuAu energy density higher than symmetric systems
 - Effect on J/ψ suppression?
Bulk Asymmetry

- Reminder:
 - Bulk forward/backward asymmetry
 - Affects J/ψ suppression?

- More studies are needed
 - Have a large J/ψ dataset from CuAu collisions
 - Reaction plane dependence
 - p_T dependence

February 5th 2013
Conclusion and Outlook

First measurements of J/ψ CuAu collisions at RHIC

- Similar suppression of Au-going J/ψ's
- Stronger suppression observed in forward (Cu-going) direction for J/ψ
- Further studies to test for reaction plane dependent production underway