U+U and Cu+Au results from Phenix

Aneta Iordanova, UC Riverside
Outline

- Motivation
 - U+U and Cu+Au

- Measuring the bulk properties
 - Mid-rapidity global particle production
 - Mid rapidity identified flow
RHIC Run 12

- RHIC versatility – energy and species scans
- Allows for unique collision environments
 - First U+U collisions at 193 GeV
 - First Cu+Au at 200 GeV
- Recent Improvements
 - EBIS source
 - Horizontal stochastic cooling in both beams
 (small beam size, high luminosity, low beam loss rates)
Tests of initial geometry

Deformed nuclei

- Initial geometry changes event-by-event
 - Expect a higher energy density than Au+Au
- For tip-tip orientation

R_{long}/R_{perp} \sim 1.29

Studies

- Initial geometry – flow relation
- Path length – parton energy loss

Key point for this measurement – experimentally separate these configurations

PRL 94, 132301 (2005)
Tests of initial geometry

Asymmetric system

- Core: asymmetric density profile
- Corona: large on Au-side

Study

- Naturally arising odd harmonics
- Central collisions:
 - Cu completely swallowed
Global particle production
Charged particle multiplicity, $dN_{ch}/d\eta$

- Charged particle density
 - increases with increasing collision energy.
 - There is an increase for more central collisions at all collision energies.
 - Au+Au and U+U are similar.

- Note: centrality selection uses ZDC+BBC. Cut on central 1% (rightmost point) – no method to separate tip-tip events.
Charged particle multiplicity, $dN_{ch}/d\eta$

- Charged particle density
 - Increases with increasing collision energy.
 - There is an increase for more central collisions at all collision energies.
 - Au+Au and U+U are similar.

- No significant change in the shape of the centrality-dependence from 7.7 GeV Au+Au collisions up to 2.76 TeV Pb+Pb collisions.
The multiplicity per participant pair increases linearly with \(\log(\sqrt{s_{NN}}) \) to RHIC energies.

No significant excess particle production in very central U+U – Compared to Au+Au at the same energy.
Transverse energy density, E_T

- Transverse energy production
 - Increases with increasing collision energy.
 - Increases for more central collisions at all collision energies.
 - The Au+Au and U+U particle E_T are similar
 - Small increase for most central data.
The transverse energy per participant pair increases linearly with $\log(\sqrt{s_{NN}})$ to RHIC energies.

- The Au+Au and U+U particle E_T are similar
 - Small increase for most central data.

The red line is a logarithmic fit to all points excluding the ALICE point.
Bjorken Energy density, ε_{BJ}

- New RHIC energy density record in U+U collisions
 - 6.15 GeV/fm2/c.
- ε_{BJ} increases by a factor of 3.8 when going from 7.7 to 200 GeV.
- Moderate increase from central Au+Au to very central U+U (20%).

Upper U+U point 1% most central, all other 5% centrality bins.
Bjorken Energy density, ε_{BJ}

- New RHIC energy density record in U+U collisions
 - 6.15 GeV/fm2/c.
- ε_{BJ} increases by a factor of 3.8 when going from 7.7 to 200 GeV.
- ε_{BJ} increases by a factor of 11 when going from 7.7 GeV to 2.76 TeV.

Upper U+U point 1% most central, all other 5% centrality bins.
Cu+Au transverse energy density, E_T

- E_T production is independent of the collision system
 - Similar E_T in Cu+Cu and Au+Au at the same N_{part}
 - Higher E_T in Cu+Au reflects larger core at the same N_{part}
Mid-rapidity identified flow
v_2 of identified hadrons

- v_2 is one of the main tests for U+U collisions.

- Comparison of v_2 of pions and protons in Au+Au and U+U
 - Shows mass ordering at low-p_T.
 - Similar behavior in peripheral collisions.
 - Slight difference in the slope of the proton v_2 in central collisions.
v_2 mass ordering and energy density

- Strong mass ordering is also observed at the LHC (ε increases by 2.5 to RHIC)
 - At low-p_T ($p_T<3$ GeV/c).
 - Qualitative agreement with Hydro (up to 3 GeV/c).

- RHIC energy scan
 - Increase of ε by factor of 2 from 39 to 200 GeV.
 - Mass ordering holds at low p_T.
 - Proton slope same for all energies ($p_T<2$ GeV).

- $\text{Au+Au} \rightarrow \text{U+U}$?
0-2% central U+U

- Au+Au → very central U+U
 - Moderate increase of ε by 20% form 0-10 Au+Au to 0-1% U+U.

- Mass ordering for pions and protons holds.

- Proton slope changes
 - Radial flow or geometry effect?
 - More studies underway.
Quark scaling, n_q

- n_q scaling for v_2 of identified hadrons in Au+Au
 - Strong centrality dependence.
 - Holds to $K_{T_q} = 1.5$ GeV (0-10% central).
 - Breaks at $K_{T_q} > 0.7$ GeV (10-20% central).
- Qualitatively consistent with recombination model calculation.
Quark scaling, n_q

- n_q scaling for v_2 of identified hadrons holds in U+U
 - For all centrality bins.

- Future measurement will extend the pion v_2 to lower $p_T < 0.5$ GeV/c.
\(v_n \) measurements in Cu+Au

- Asymmetric density profile will lead to asymmetric pressure gradient
 - Measure particle production relative to the Spectator(true) reaction plane.
- In data
 - Use the shower max in the ZDC (neutron).
 - Direction decided by the Au spectators.
 - \(\Psi_{1,SMD} \): combination of \(\Psi_{1,SMDSouth} \) with flipped \(\Psi_{1,SMDNorth} \).
v_n measurements in Cu+Au

- Asymmetric density profile will lead to asymmetric pressure gradient
 - Measure particle production relative to the Spectator(true) reaction plane.
- In data
 - Use the shower max in the ZDC (neutron).
 - Direction decided by the Au spectators.
 - $\Psi_{1,\text{SMD}}$: combination of $\Psi_{1,\text{SMDSouth}}$ with flipped $\Psi_{1,\text{SMDNorth}}$.

Φ_n or $p-\Psi_{\text{True}}$

Ψ_{True}

$\Psi_{1,\text{SMD}}$

south

north

Cu+Au

Cu

Au
• An asymmetric $dN/d\Delta \phi$ distribution is observed with $\Psi_{1, SMD}$
 - more particles emitted from the Au side than from the Cu side.
• Hadrons at mid-rapidity ($|\eta| < 0.35$) exhibit large v_1 and v_2
 (not observed in Au+Au).
• Not consistent with a large v_3.
Modeling v_n

- Comparison with AMPT at midrapidity
 - v_2 observed trends are expected.
 - Stronger v_1 (zero in AuAu)
 - Wrong sign.
 - Naively explained by the corona.

AMPT (v1.21) results calculated by H. Ruiz and J. Nagle with string melting cross section (σ) of 3 mb
Sizable positive pion v_1 is observed at $p_T > 1\text{GeV/c}$ at midrapidity
- Increases with p_T.
- Observed in all centrality bins.
- May be due to asymmetric density profile.
- Need more statistics for proton.
The v_2 of pions and protons are measured as a function of p_T and centrality.

- The v_2 measured from Ψ_1 and Ψ_2 are consistent with each other (Ψ_{BBC}).
The v_2 of pions and protons are measured as a function of p_T and centrality.

- The v_2 measured from Ψ_1 and Ψ_2 are consistent with each other (Ψ_{BBC}).
- The n_q scaling holds in Cu + Au collisions at 200 GeV.
Nuclear modification factor, R_{AB}

- Cu+Au comparable to Au+Au at the same Ncoll values.
Baryon to meson ratio

Cu+Au

- Significant baryon enhancement in central collisions
 - Magnitude similar for positive and negative ratios.
Baryon to meson ratio

- Significant baryon enhancement in central collisions
 - Magnitude similar for positive and negative ratios.
 - Different from Au+Au and Cu+Cu at the same energy.
Baryon to meson ratio

Cu+Au

- Pbar/p ratio *in symmetric systems* depends on root s only, with small centrality and p_T dependence
 - 200 GeV ~ 0.8
 - 62.4 GeV ~ 0.5
- Pbar/p ratio in Cu+Au at 200 GeV ~ 0.9
 - Why less protons?
 - Higher ε at the same N_{part} than in a symmetric system.
 - Need further measurements!
Summary

- First measurements at RHIC from two very unique systems.
- U+U at 193 GeV
 - The highest energy density reached at RHIC.
 - Exploring a way to separate tip-tip collisions.
- Cu+Au at 200 GeV
 - Non zero v_1 observed at mid-rapidity, no v_3.

- Many more results to come!
Backup
Transverse energy parametrization, LHC
U+U → Au+Au advantage

- Theoretical motivation
 - **Initial geometry (Eccentricity) – flow studies**
 - V2 driven by initial geometry
 - V2/e in central Au as predicted by ideal hydro
 - Crucial test: increase the en density, what happens to v2/e
 - Path length – parton energy loss studies

- The medium density in U+U is 35-55% higher than in Au+Au
 - Difference in the overlap area, S
 - b=0, S(tip-tip) same as S(Au+Au)
 - S(body-body) 24% higher than S(Au+Au)
 - Difference in Nch ~Npart

Transverse Nch density

- dNch/dy/S tip-tip 42.6 fm-2, Body-body 31.7 fm-2, Au_Au 31.5 fm-2
- PRC 73, 034911 (2006)
ALICE v_2

M. Krzewicki@ALICE QM2011

π^\pm, v_2 [SP, $|\Delta\eta|>1$]
Λ^0, v_2 [SP, $|\Delta\eta|>1$]
\bar{p}, v_2 [SP, $|\Delta\eta|>1$]
hydro LHC
(CGC initial conditions)
($\eta/s=0.2$)

$\sqrt{s_{NN}} = 2.76$ TeV
centrality 10%-20%

$nq(mT)$-scaling worse than at RHIC

$nq(pT)$-scaling at $pT > 1.2$ GeV/c violation 10–20%
3. Event plane correlation

1. The correlation between \(\Psi_{1,BBC}^{South} \), measured by the south BBC in the Au-going direction, and \(\Psi_{1,SMD}^{South} \) is stronger than the correlation between \(\Psi_{1,BBC}^{North} \) in the Cu-going direction and \(\Psi_{1,SMD}^{South} \). It indicates that \(\nu_1 \) is larger in the Au-going direction than that of Cu-going direction.

2. The raw correlation of \(\Psi_3 \) with \(\Psi_1 \) and \(\Psi_2 \) are pretty weak.

North: Cu-going
South: Au-going

Find a better plot A.Iordanova
Hadron v_1
Hadron v_2
Transverse energy density, E_T

- Transverse energy production
 - Increases with increasing collision energy.
 - There is an increase in for more central collisions at all collision energies.
 - The Au+Au and U+U particle E_T are similar.

- No significant change in the shape of the centrality-dependence from 7.7 GeV Au+Au collisions up to 2.76 TeV Pb+Pb collisions
 - Collision geometry is driving the centrality dependence.
Run 12 parameters

<table>
<thead>
<tr>
<th>species</th>
<th>s</th>
<th>wks</th>
<th>+_30cm</th>
<th>+-10</th>
<th>motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>U+U</td>
<td>193</td>
<td>2.9</td>
<td>171.2 µb-1</td>
<td>89.9 µb-1</td>
<td>explore geometry</td>
</tr>
<tr>
<td>Cu+Au</td>
<td>200</td>
<td>5.5</td>
<td>4.96 nb-1</td>
<td>2.47 nb-1</td>
<td>control geometry</td>
</tr>
</tbody>
</table>
Quark scaling, n_q

- n_q scaling for v_2 of identified hadrons in Au+Au
 - Strong centrality dependence
 - Holds to $kE_T/n_q = 1.5$ GeV (0-10% central)
 - Breaks at $kE_T > 0.7$ GeV (10-20% central)
- Qualitatively consistent with recombination model calculation

C. B. Chiu, R. C Hwa et al. PRC.78.044903