Freeze-out Conditions in Heavy Ion Collisions: a lattice QCD based approach

Swagato Mukherjee

February 2013, WWND, Squaw Valley
QCD phase diagram and conserved charge fluctuations in HIC

Search for QCD critical point in RHIC Beam Energy Scan

Higher order cumulants of conserved charge fluctuations:

Skewness: $S \sim \xi^{4.5}$

Kurtosis: $\kappa \sim \xi^{7}$

$\kappa < 0$ near the critical point

M. Stephanov

Measured by STAR, PHENIX
before looking for signatures of critical behavior, first need to establish basic non-critical features of conserved charge fluctuations are fluctuations described by equilibrium thermodynamics characterized by a unique set of $\left(T_f, \mu_B^f, \mu_Q^f, \mu_S^f \right)$?
QCD phase diagram and conserved charge fluctuations in HIC

are fluctuations described by equilibrium thermodynamics characterized by a unique set of \((T^f, \mu^f_B, \mu^f_Q, \mu^f_S) \)?

are these parameters close to QCD transition line in the \(T - \mu_B \) plane?

are these parameters same as the chemical freeze-out parameters?
QCD transition line in the $T-\mu_B$ plane

$T_c(0) = 154(9)\text{ MeV}$

HotQCD

$T_c(\mu_B) = T_c(0) \left[1 - 0.0066(7)\mu_B^2 \right]$
strangeness deconfines at the chiral crossover from (lattice) QCD calculations
Chemical freeze-out and the transition line

LQCD: \[T_c(\mu_B) = 154(9) \left[1 - 0.0066(7) \mu_B^2 \right] \text{ MeV} \]

BNL-Bielefeld

QCD critical point will be situated somewhere along this critical region

where do the conserved charge fluctuations freeze-out w.r.t the QCD transition line?

if they are not close enough then no signature of critical behavior in fluctuation related observables
Chemical freeze-out condition in HIC

\[\sqrt{s} \]

Initial state

Pre-equilibrium

QGP, hydro. expansion

\[T_c, \mu_c \]

Hadronization

Freeze-out

\[T_f^c, \mu_B^f \]

Temperature

Time

\[(T_f^{ch}, \mu_B^{ch}, \mu_Q^{ch}, \mu_S^{ch}) \]

by comparing hadron yields from HIC expt.

Statistical / thermal / HRG model

Chemical freeze-out

Hadron abundances unchanged

Thermalized, non-interacting hadrons & resonances
Chemical freeze-out condition in HIC

Chemical freeze-out is driven by inelastic scattering.

freeze-out conserved charge fluctuations is achieved via diffusion.

do conserved charge fluctuations freeze-out at the same chemical freeze-out point as hadron yields?
Fix freeze-out conditions \(\left(T_f, \mu_B^f, \mu_Q^f, \mu_S^f \right) \) by comparing experimental results for some lower order cumulants of conserved charge fluctuations with first-principle (lattice) QCD calculations.

If the fluctuations are described by equilibrium thermodynamics then all other higher order cumulants can be compared in a parameter-free manner with (L)QCD calculations to search for signatures of critical behavior in the experimentally measured observables.
fix using HIC initial conditions

strangeness neutrality

\[\langle N_S \rangle = 0 \]

iso-spin asymmetry

\[\langle N_Q \rangle = r \langle N_B \rangle \]

assume: homogeneous system

\[\langle n_S \rangle = 0 \]

\[\langle n_Q \rangle = r \langle n_B \rangle \]

\[N_X = N_X - N_{\bar{X}}, \quad n_X = N_X/V \]

B: baryon, Q: charge, S: strangeness

p: proton, n: neutron

Au-Au & Pb-Pb: \(r \approx 0.4 \)
\[\langle n_S \rangle = 0 \quad \langle n_Q \rangle = r \langle n_B \rangle \]

expand these two relations in powers of \(\mu_B, \mu_Q, \mu_S \) around \(\mu_B = \mu_Q = \mu_S = 0 \)

\[\mu_Q(T, \mu_B) = q_1(T) \mu_B + q_3(T) \mu_B^3 + \cdots \]

\[\mu_S(T, \mu_B) = s_1(T) \mu_B + s_3(T) \mu_B^3 + \cdots \]
Strangeness and electric charge chemical potentials

\[\langle n_S \rangle = 0 \quad \langle n_Q \rangle = r \langle n_B \rangle \]

expand these two relations in powers of \(\mu_B, \mu_Q, \mu_S \) around \(\mu_B = \mu_Q = \mu_S = 0 \)

\[
\mu_Q(T, \mu_B) = q_1(T) \mu_B + q_3(T) \mu_B^3 + \cdots \\
\mu_S(T, \mu_B) = s_1(T) \mu_B + s_3(T) \mu_B^3 + \cdots
\]

NLO: cumbersome but straightforward

LO: for example

\[
\langle n_s \rangle = (\chi_{11}^{BS} + q_1 \chi_{11}^{QS} + s_1 \chi_2^S) \mu_B + \cdots = 0 \\
(\chi_{11}^{BQ} + q_1 \chi_2^Q + s_1 \chi_{11}^{QS}) \mu_B + \cdots = r (\chi_2^B + q_1 \chi_{11}^{BQ} + s_1 \chi_{11}^{BS}) \mu_B + \cdots
\]

2 equations, solve for 2 unknowns: \(q_1, s_1 \)
Strangeness and electric charge chemical potentials

\[\mu_Q(T, \mu_B) = q_1(T) \mu_B + q_3(T) \mu_B^3 \]

\[\mu_S(T, \mu_B) = s_1(T) \mu_B + s_3(T) \mu_B^3 \]

LO: \(N_\tau = 6, 8, 12 \) continuum extrapolated

NLO: corrections < 10\% for \(T > 140 \text{ MeV}, \frac{\mu_B}{T} \lesssim 1.3 \)

\(N_\tau = 6, 8, \) small cut-off dependence, *continuum estimate*
Strangeness and electric charge chemical potentials

\[-\mu_Q(T, \mu_B)/\mu_B\]

NLO expansion is well controlled for

\[T = 150 - 170 \text{ MeV}, \ \mu_B \approx 200 \text{ MeV}\]

covers RHIC energies

\[\sqrt{s_{NN}} \gtrsim 20 \text{ GeV}\]

\[\mu_S(T, \mu_B)/\mu_B\]

\(~10\% \text{ deviations from HRG}\)

BNL-BI: PRL 109, 192302 (2012)
Strangeness and electric charge chemical potentials

\[\frac{\mu_s}{\mu_B} = 0.2 - 0.3 \]

weak dependence on \(\mu_B \)

how does it compare with the chemical freeze-out parameters obtained from thermal model fits to hadron yields?
Strangeness and electric charge chemical potentials

\[\mu_S / \mu_B = 0.2 - 0.3 \]

weak dependence on \(\mu_B \)

reflects strangeness neutrality
Temperature and baryon chemical potential

all observables can now be obtained as function of two independent parameters T, μ_B

comparison of 2 expt. measured ratios of cumulants of conserved charge fluctuations with LQCD calculations fixes 2 freeze-out parameters T^f, μ_B^f

proton fluctuations (expt.) \approx baryon fluctuations (LQCD)

Asakawa-Kitazawa; Bzdak-Koch-Skokov

safe to work with net electric charge fluctuations measured both in expt. and LQCD

ratio of cumulants: cancels the unknown volume of the fireball
Temperature and baryon chemical potential

\[
\frac{M_Q(\sqrt{s})}{\sigma_Q(\sqrt{s})} = \frac{\langle N_Q \rangle}{\langle (\delta N_Q)^2 \rangle} = \frac{\chi_Q(T, \mu_B)}{\chi_Q(T, \mu_B)} = R_{12}^Q(T)\mu_B + R_{12}^Q(T)\mu_B + \cdots = R_{12}^Q(T, \mu_B)
\]

\[
\frac{S_Q(\sqrt{s})\sigma^3_Q(\sqrt{s})}{M_Q(\sqrt{s})} = \frac{\langle (\delta N_Q)^3 \rangle}{\langle N_Q \rangle} = \frac{\chi_3(T, \mu_B)}{\chi_1(T, \mu_B)} = R_{31}^0(T) + R_{31}^2(T)\mu_B^2 + \cdots = R_{31}^Q(T, \mu_B)
\]

baryometer, fixes \(\mu_B^f\)

thermometer, fixes \(T_f\)

HIC
- mean: \(M_Q\)
- variance: \(\sigma_Q^2\)
- skewness: \(S_Q\)
- \(\delta N_Q = N_Q - \langle N_Q \rangle\)

STAR, PHENIX

LQCD

generalized charge susceptibilities:

\[
\chi_n(T, \bar{\mu}) = \frac{1}{VT^3} \frac{\partial^n \ln Z(T, \bar{\mu})}{\partial (\mu_Q/T)^n}
\]
The baryometer

\[R_{12}^Q = \frac{M_Q}{\sigma_Q^2} \]

\[R_{12}^Q(T, \mu_B) = R_{12}^{Q,1}(T)\mu_B + R_{12}^{Q,3}(T)\mu_B^3 \]

LO: \(N_\tau = 6, 8, 12 \) continuum extrapolated

NLO: corrections < 10\% for \(T > 140 \) MeV, \(\mu_B/T \leq 1.3 \)

\(N_\tau = 6, 8 \), small cut-off dependence, *continuum estimate*
Importance of $\mu_Q \neq 0, \mu_S \neq 0$

$R_{12}^{Q,1} = \frac{\chi_{11}^{BQ}}{\chi_2^Q} + \frac{\mu_Q}{\mu_B} + \frac{\mu_S}{\mu_B} \frac{\chi_{11}^{QS}}{\chi_2^Q}$

contributes equally in the relevant T range

2+1 flavor QCD essential
The thermometer

\[R_{31}^Q = S_Q \sigma_Q^3 / M_Q \]

large deviation from HRG for \(T > 155 \) MeV

provide stringent constraint on \(T \)

\[R_{31}^Q(T, \mu_B) = R_{31}^{Q,0}(T) + R_{31}^{Q,2}(T) \mu_B^2 \]

NLO corrections: \(\lesssim 10\% , \mu_B / T \lesssim 1.3 \)
\[R_{12}^Q = \frac{M_Q}{\sigma_Q^2} \]

\[R_{31}^Q = S_Q \sigma_Q^3 / M_Q \]

\[\mu_B/T = 1 \]
\[\mu_B/T = 0 \]
\[N_T = 6 \]
\[N_T = 8 \]

<table>
<thead>
<tr>
<th>$S_Q \sigma_Q^3 / M_Q$</th>
<th>T_f [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 2</td>
<td>≤ 155</td>
</tr>
<tr>
<td>~ 1.5</td>
<td>~ 160</td>
</tr>
<tr>
<td>≤ 1</td>
<td>≥ 170</td>
</tr>
</tbody>
</table>

BNL-BI: PRL 109, 192302 (2012)
Systematic: estimates using HRG

series truncation: \(\sim 5\% \)

continuum limit: \(\sim 5\% \)
STAR data on net proton fluctuations

Star preliminary
X. Luo, Quark Matter 2012
STAR and PHENIX data on electric charge fluctuations

STAR Preliminary
L. Kumar, Quark Matter 2012

PHENIX Preliminary
J. Mitchell, Quark Matter 2012
$R_{31}^Q = S_Q \sigma_Q^3 / M_Q$

T_f is in reasonably good agreement with the chemical freeze-out temperature $T_{f, ch}^f \approx 160$ MeV

but at present large experimental errors for a more precise determination
variation of $T_{f,\mathrm{ch}}$ is < 5 MeV for $\sqrt{s_{\mathrm{NN}}}>19$ GeV

as a first start, use the average value over $\sqrt{s_{\mathrm{NN}}}=19.6-200$ GeV

$R_{31}^Q = S_Q \sigma_Q^3/M_Q$

$R_{31}^Q = 1.56(16)$

STAR preliminary
Quak Matter 2012

for orientation:

$T_c(\mu_B=0)=154(9)$ MeV

$T_{f,\mathrm{ch}}=160(5)$ MeV

$T_f=158(7)$ MeV
$R_{12}^Q = M_Q / \sigma_Q^2$

μ_B^f / T^f agree reasonably with $\mu_B^{f,\text{ch}} / T^{f,\text{ch}}$
net-proton fluctuations == net-baryon fluctuations

\[R_{12}^{B} = \frac{M_B}{\sigma_B^2} \text{ vs. } R_{12}^{p} = \frac{M_p}{\sigma_p^2} \]

Moreover, \(\mu_B^f / T^f \) agree reasonably with \(\mu_{B,\text{ch}}^f / T_{\text{ch}}^f \).
Thermodynamic consistency

if the fluctuations are described by equilibrium thermodynamics

\[R_{12}^Q / R_{12}^B = \frac{R_{12}^Q}{R_{12}^B} \]

must contain identical information regarding \(T \) and \(\mu_B \)
Thermodynamic consistency

if the fluctuations are described by equilibrium thermodynamics

However ...

currently STAR preliminary @ $\sqrt{s_{\text{NN}}}=200$ GeV: $R_{12}^Q/R_{12}^B \approx 0.06$

a problem !!
Thermodynamic consistency

in other words ...

give inconsistent values for μ_B^f
a problem !!
are conserved charge fluctuations in HIC consistently described by equilibrium thermodynamics characterized by a unique set of freeze-out parameters ??

can be tested and the freeze-out parameters can be determined by comparing HIC experimental results with first-principle (lattice) QCD calculations via controlled NLO Taylor expansion up to

\[\mu_b \approx 200 \text{ MeV}, \sqrt{s_{NN}} \approx 19.6 \text{ GeV} \]

general agreement with chemical freeze-out parameters obtained from thermal model fits to hadron yields, but some problem remains to be addressed once such a procedure is fully carried out, then (lattice) QCD calculations can be compared with other experimentally measured higher cumulants to search for signatures of critical behavior