Density perturbations in heavy ion collisions around the critical point

Kerstin Paech and Adrian Dumitru
Density perturbations in heavy ion collisions around the critical point

Motivation:

Weights Map: WMAP Science Team
http://lambda.gsfc.nasa.gov/product/map/m_images.cfm

Kerstin Paech and Adrian Dumitru
How to find the critical endpoint?

- Critical Fluctuations?
 (massless order parameter)

- Bulk Properties?

 In HICs small system size and short time scales
Gell-Mann Levy - Model

\[\mathcal{L} = \bar{q} \left[i \gamma^\mu \partial_\mu - g(\sigma + i \gamma_5 \vec{\pi} \cdot \vec{\pi}) \right] q + \frac{1}{2} \left(\partial_\mu \sigma \partial^\mu \sigma + \partial_\mu \vec{\pi} \partial^\mu \vec{\pi} \right) - U(\sigma, \vec{\pi}) \]

\[U(\sigma, \vec{\pi}) = \frac{\lambda^2}{4} (\sigma^2 + \vec{\pi}^2 - v^2)^2 - h_q \sigma - U_0 \]

\[\phi_a = (\sigma, \vec{\pi}) \]

Finite Temperatures:

One-loop effective Potential

\[V_{eff}(\phi_a, T, \mu) = U(\phi_a) - d_q T \int \frac{d^3 p}{(2\pi)^3} \left\{ \log \left(1 + e^{-\frac{E+\mu}{T}} \right) + \log \left(1 + e^{-\frac{E-\mu}{T}} \right) \right\} \]

\[E = \sqrt{p^2 + (g\phi)^2} \]

q and \(\bar{q} \) have been integrated out to generate the effective Potential for the chiral fields \(\varphi_a \)
Coupled Dynamics of Field and Fluid

Equations of Motion:

Field: \(\Box \phi_a + \frac{\delta V_{\text{eff}}}{\delta \phi_a} = 0 \)

Fluid: \(\partial_\mu T_{\text{fluid}}^{\mu\nu} = \partial_\mu [(e + p)u^\mu u^\nu - pg^{\mu\nu}] \)
\(\partial_\mu j^\mu = \partial_\mu (\rho u^\mu) = 0 \)
\(p = p(e, \rho, \phi) = -(V_{\text{eff}}(e, \rho, \phi) - U(\phi_a)) \)

Coupling of field and fluid: \(\partial_\mu \left(T_{\text{fluid}}^{\mu\nu} + T_{\text{field}}^{\mu\nu} \right) = 0 \)

Scavenius, Mocsy, Mishustin, Rischke; Phys. Rev. C64 045202, 2001
Effective Potential and Equation of State

Crossover

\[V_{\text{eff}}/T^4 \]

\[\sigma (\text{MeV}) \]

\[\rho (e_0) \]

\[e(e_0) \]
1st Order Transition

Effective Potential and Equation of State

Kerstin Paech and Adrian Dumitru
Initial Conditions

\[\mu = T = 0 \]
\[\sigma = 93 \text{ MeV} \]

\[T > T_c \]
\[\mu > \mu_c \]
\[\sigma \approx 0 \]
\[\vec{\pi} = 0 \]
Results:
Evolution of Baryon- and Energy density
Results:
Time dependence of Baryon Density

\[\rho [\rho_0] \]

1st order

WMAP Science Team
http://lambda.gsfc.nasa.gov/product/map/m_images.cfm
Results:
Density Inhomogeneities
Summary and Outlook

non-eq dynamics of order parameter field in HIC can lead to large
density inhomogeneities: $\Delta e/e_0, \Delta \rho/\rho_0 \sim 1$

amplitude of baryon density fluctuations depends on structure of
eff. potential:
larger effect in the regime of 1st-\(O\) transitions than for \(X\)-over

observables? one possible effect: "little bang hadroproduction", i.e.
relative hadron abundancies

effects of a damping term for the order parameter field

Talk by S. Pratt